BECKHOFF

TF6310

TwinCAT 3 | TCP/IP

Fle Edt View projeq Build Debug
AN

- Y * | Release
uild 4024.4 (Loaded)

HEe e

New Project

TwinCAT -
- Q- TWinSAFE plc -

B | ToinCaTpr

Solution Explorer
6 &

<h Solution Exp

©
b Recent

. . 4 Installed

%] Solution ‘TwinCAT Project’ (1 project) et

4 /| TWinCAT Project
4 (@] SvSTEM

¥ License

TwinCAT Controller
b TwinCAT Measurement
TwinCAT CAD Interface Beta Version
TwinCAT Projects
TwinCATPLC
TcXaeShell Solution

D Real-Time
B Tasks
5is Routes
23 Type System
&) TcCOM Objects
[moTIoN
@ rLc
SAFETY
Cer
& AnaLmCs .
HNE Not finding what you are looking for?
7 Open Visual Studio Installer

TwinCAT Project

Create new solution

Name:
Location:
Solution:

ame inCAT project
Solution name:

-21 | Version: 1.5.1

*| TWinCAT T (64)

Scope Tools Window Help
P Attach.. v
ect * <locab> -

y: | Default

gt TinCATXAE Project (XML formt)

Browse

e o fr oL

] ngdtoSouce Con!

BEGKHOFF Table of contents

Table of contents

1

L o] =3V o c S 5
1.1 Notes on the doCUMENTALION ... e e e e e 5
L o Yo TN T =Y |V USRS POPPPP 5
1.3 Notes on infOrmation SECUNITYcooi i 7
1.4 Documentation iSSUE STATUSoiiiiii i e e e e e e e e 7
L0 Y=Y = 8
2.1 Comparison TFB3T0 TEB3TT ...oci ittt e et e e e e e e e e e e e et aeeeeaaaaeas 8
0 T=3 =11 T T) o 9
3.1 SYSIEM FEQUINEIMENESeiiiiiiiiiiiee ettt e e e ettt e e e s ettt e e e e st te e e e e s anbeeeeeesnteeaaeeanseeeeeeans 9
G T [1 =11 =1 o o PP 9
3.3 Installation from TWINCAT 4026 ...ttt e e e e e e e e e e e e e eeeeeaaaaeeas 12
3.4 Installation WINAOWS CE ..ot e e e e e e et te e e e s ennneeeas 13
S N oY o 11 T IR PSPPSR 14
3.6 Migration from TWINCAT 2 ... ettt e e e e e e e et e e e e e e e e e e e e e e nnneeeeeeeaaaaeens 16
Technical INtrOAUCTION.........eeeeee e e e e s e mnmnnn e e e e e e e s 19
g B O T T3 RS) = o (RO 19
N (0] (010 £ S PP PP PP 20
IO PSR 23
LS 0t B o 0] o7 11 o] [o o3 (= PSSR 23
511 [S TS o Ted (=1 (@o]] =T o1 (PR 23
51.2 FB_SOCKEICIOSE ..ottt e e e eaaa e 24
51.3 FB_SOCKEICIOSEAILttt e et e e e enneee 25
514 S TS oo (Y | I (= o SRR 26
5.1.5 FB _ SOCKEIACCEPE. ...ciiieieiie ettt e e e e e e e e e e e e e e e e 27
5.1.6 FB_SOCKEISENG ..ot 28
51.7 FB_SOCKEIRECEIVE. ...t e e e e e eeaaaaaans 30
5.1.8 FB_SOCKEIUAPCIEALE ...ttt e e e e e e e reeaeaaaae s 31
51.9 [SRS ToTe 11 LU o | 01 7= o o I I RSP 32
5110 FB_SoCKetUdPRECEIVEFTOM.....ueiiiiiiiiiiiiieee e 34
5.1.11 FB_SocketUdpAddMUItICAStAAArESSeoviiiiiiiiieeiiiiii et 36
5112 FB_SocketUdpDropMultiCastAddresscccuuueiieiiiieieeeeee e a e 37
5,113 FB_TISSOCKEICONNECT ...t aa e 38
5114 FB_TISSOCKETLISIENt 40
5115 FB _TISSOCKEICIEAE ...t e e e e e 41
5.1.16 FB_TISSOCKEIAAACEeiiiiiiiiiiie ettt e e e e e e e et e e e e 42
5117 FB_TISSOCKEIAAACHueiiiiiiiiiie ettt e e e e e srree e e et eea e e e ennees 43
5,118 FB_TISSOCKEISEICEI..... ...t a e 44
5,119 FB_TISSOCKEISEIPSK ...t e e e e e e e e e 45
Lot 0 O o =0T PR 46
Lo U e (o] o PRSPPI 53
5.2.1 F_CreateServerHNdo 53
5.2.2 HSOCKET _TO_STRING ...ttt ettt e e et e e e e e entae e e e e e nnbena e e e nnnees 54
5.2.3 HSOCKET_TO_STRINGEX ..ottt ettt e e e nbee e e e nnnees 55

TF6310 Version: 1.5.1 3

Table of contents BEGKHOFF

524 SOCKETADDR _TO_STRING......ceiiiiiiiiiie ettt e e e e e s enneeee s 56

TR B B -1 = 1 Y/ o= PSRRI 56
5.31 E_ SOCKEtACCEPIMOAE 56

5.3.2 E_SocketConNeCHONSTALEuuveiiiiiieee it 57

5.3.3 E_SocketConnectionlesSState........oooii i 57

534 E_ WINSOCKEITON ...ttt ettt s e e e e e e e e e e e e e aeaeaeeeeeeeenesnsnees 58

5.3.5 SR RS o le! 7aXe o [OO SOUPPRRRPORP 59

5.3.6 ST _TISCONNECLFIAGS. ... ittt 60

5.3.7 ST _TISLISTENFIAGSvvveieiiiiiiee et e e e e e e e e e e e e aee s 60

5.3.8 T HSERVER. ...ttt e e e e e e e e e e e e e e e e e e nbaeeeeeennees 61

5.3.9 LI 5 151 L2 i PRSP RRR 61

ST A €1 (o] o Y= [oTo] =) r= 1 1 £ PSPPSR 62
5.4.1 [o] =1 VA=Y 1 (o] o PP PRP PRSP 62

54.2 Parameter lISt....... .. e a e 63

LTS - 1101 o (=P 64
& 0t I O PSSR 65
6.1.1 Sample01: "Echo" client/server (basic function bIOCkS)cccoviviiiiiiiiiee, 65

6.1.2 Sample02: “ECho” ClIENt /SEIVET e 84

6.1.3 Sample03: “EChO” ClIENT/SEIVETuviieiiiieeee e 85

6.1.4 Sample04: Binary data €XChangeeoiiiiiiiiiii e 87

6.1.5 Sample05: Binary data eXChange ... 89

6.1.6 Sample06: "Echo" client/server with TLS (basic modules)ccccoveevieeeeeiiiiiiiiiieeee, 90

6.1.7 Sample07: "Echo" client/server with TLS-PSK (basic modules)............ccccooiiiieienniiinnnen. 91

LT U | PSSR 91
6.2.1 Sample01: Peer-to-peer CommuNiCatioN...........ccccuviiiiiiiiiee e 91

6.2.2 SaMPIE02: MURICAST ... e e e e e e e e e e eeeeeees 99
LAY+ o 1= Lo 13 G 100
A0 T © 1] 4 T To [O SUPRRT 100
7.2 KeepAIlive CONFIGUIALIONooiiiiii e e e e e e e e e et eeeaaae e 100
4 T =4 (o o Yo [USSP 101
7.31 Overview Of the error COUES ..o e e 101

7.3.2 Internal error codes of the TwWinCAT TCP/IP Connection Server...........ccccceeeviiieeeeennne 102

7.3.3 Troubleshooting/diagnOSHICSueiiiiiiie e 104

7.34 ADS RELUMN COUES.......ueiiiieeiiiiiie ettt e et e e e et e e e e enbe e e e e e snstaeeaeeanbaenaeeanns 104

A S U o] oY) o aF=Ta o IS T=Y Vo7 J USSP 108

Version: 1.5.1 TF6310

BEGKHOFF Foreword

1 Foreword

1.1 Notes on the documentation

This description is intended exclusively for trained specialists in control and automation technology who are
familiar with the applicable national standards.

The documentation and the following notes and explanations must be complied with when installing and
commissioning the components.

The trained specialists must always use the current valid documentation.

The trained specialists must ensure that the application and use of the products described is in line with all
safety requirements, including all relevant laws, regulations, guidelines, and standards.

Disclaimer

The documentation has been compiled with care. The products described are, however, constantly under
development.

We reserve the right to revise and change the documentation at any time and without notice.

Claims to modify products that have already been supplied may not be made on the basis of the data,
diagrams, and descriptions in this documentation.

Trademarks

Beckhoff®, ATRO®, EtherCAT®, EtherCAT G®, EtherCAT G10°®, EtherCAT P®, MX-System®, Safety over
EtherCAT®, TC/BSD®, TwinCAT®, TwinCAT/BSD®, TwinSAFE®, XFC®, XPlanar®, and XTS® are registered
and licensed trademarks of Beckhoff Automation GmbH.

If third parties make use of the designations or trademarks contained in this publication for their own
purposes, this could infringe upon the rights of the owners of the said designations.

EtherCAT.-

EtherCAT® is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany.

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.

The distribution and reproduction of this document, as well as the use and communication of its contents
without express authorization, are prohibited.

Offenders will be held liable for the payment of damages. All rights reserved in the event that a patent, utility
model, or design are registered.

Third-party trademarks

Trademarks of third parties may be used in this documentation. You can find the trademark notices here:
https://www.beckhoff.com/trademarks.

1.2 For your safety

Safety regulations

Read the following explanations for your safety.
Always observe and follow product-specific safety instructions, which you may find at the appropriate places
in this document.

Exclusion of liability

All the components are supplied in particular hardware and software configurations which are appropriate for
the application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

TF6310 Version: 1.5.1 5

https://www.beckhoff.com/trademarks

Foreword BECKHOFF

Personnel qualification

This description is only intended for trained specialists in control, automation, and drive technology who are
familiar with the applicable national standards.

Signal words

The signal words used in the documentation are classified below. In order to prevent injury and damage to
persons and property, read and follow the safety and warning notices.

Personal injury warnings

A DANGER

Hazard with high risk of death or serious injury.

Hazard with medium risk of death or serious injury.

A CAUTION

There is a low-risk hazard that could result in medium or minor injury.

Warning of damage to property or environment

The environment, equipment, or data may be damaged.

Information on handling the product

d This information includes, for example:
1 recommendations for action, assistance or further information on the product.

Version: 1.5.1 TF6310

(e}

BEGKHOFF Foreword

1.3 Notes on information security

The products of Beckhoff Automation GmbH & Co. KG (Beckhoff), insofar as they can be accessed online,
are equipped with security functions that support the secure operation of plants, systems, machines and
networks. Despite the security functions, the creation, implementation and constant updating of a holistic
security concept for the operation are necessary to protect the respective plant, system, machine and
networks against cyber threats. The products sold by Beckhoff are only part of the overall security concept.
The customer is responsible for preventing unauthorized access by third parties to its equipment, systems,
machines and networks. The latter should be connected to the corporate network or the Internet only if
appropriate protective measures have been set up.

In addition, the recommendations from Beckhoff regarding appropriate protective measures should be
observed. Further information regarding information security and industrial security can be found in our
https://www.beckhoff.com/secguide.

Beckhoff products and solutions undergo continuous further development. This also applies to security
functions. In light of this continuous further development, Beckhoff expressly recommends that the products
are kept up to date at all times and that updates are installed for the products once they have been made
available. Using outdated or unsupported product versions can increase the risk of cyber threats.

To stay informed about information security for Beckhoff products, subscribe to the RSS feed at https://
www.beckhoff.com/secinfo.

1.4 Documentation issue status

Version Change
1.5.x New:

Technical introduction/Quick Start

Technical introduction/protocols

TF6310 Version: 1.5.1 7

https://www.beckhoff.com/secguide
https://www.beckhoff.com/secinfo
https://www.beckhoff.com/secinfo

Overview

BECKHOFF

2 Overview

The TwinCAT TCP/IP Connection Server enables the implementation of one or several TCP/IP servers/
clients in the TwinCAT PLC. This gives a PLC programmer the possibility to develop own network protocols
of the application layer (OSI model) directly in a PLC program. The communication connection can optionally

be secured via TLS.

Product components

The product TF6310 TCP/IP consists of the following components, which will be delivered by the setup:

* PLC library: Tc2_Tcplp library (implements basic TCP/IP and UDP/IP functionalities).
» Background program: TwinCAT TCP/IP Connection Server (process which is used for

communication).

2.1 Comparison TF6310 TF6311

The products TF6310 "TCP/IP" and TF6311 "TCP/UDP Realtime" offer similar functionality.

This page provides an overview of similarities and differences of the products:

TF 6310 TF 6311
TwinCAT TwinCAT 2/3 TwinCAT 3
Client/Server Both Both
Large / unknown networks ++ +
Determinism + ++
High-volume data transfer ++ +
Programming languages PLC PLC and C++
Operating system Win32/64, CE5/6/7 Win32/64, CE7
UDP-Mutlicast Yes No
Trial license Yes Yes
Protocols TCP, UDP TCP, UDP, Arp/Ping
Hardware requirements Variable TwinCAT-compatible network card

Socket configuration

See operating system (WinSock)

TCP/UDP RT TcCom Parameters

The Windows firewall cannot be used, since the TF6311 is directly integrated in the TwinCAT system. In
larger / unknown networks we recommend using the TF6310.

Version: 1.5.1

TF6310

BEGKHOFF Installation

3 Installation

3.1 System requirements

The following system requirements must be met for the function TF6310 TCP/IP to work properly.

Technical data Description

Operating system Windows 10, 11

Windows CE 6/7

Windows Embedded Standard 2009

TwinCAT/BSD
Target platforms PC architecture (x86, x64, Arm®)
TwinCAT Version TwinCAT 2, TwinCAT 3
TwinCAT installation level TwinCAT 2 CP, PLC, NC-PTP
TwinCAT 3 XAE, XAR, ADS
Required TwinCAT license TS6310 (for TwinCAT 2)

TF6310 (for TWinCAT 3)

® Support of TLS
1 Please note that the TLS function blocks are not available under Windows CE.

3.2 Installation

Setup installation (TwinCAT 3.1 Build 4024)

The following section describes how to install the TwinCAT 3 function for Windows-based operating systems.
v' The TwinCAT 3 function setup file was downloaded from the Beckhoff website.

1. Run the setup file as administrator. To do this, select the Run As Admin command in the context menu
of the file.

= The installation dialog opens.

TF6310 Version: 1.5.1 9

Installation BECKHOFF

2. Accept the end user licensing agreement and click Next.

License Agreement

Flease read the following license agreement carefully.

Software Usage Agreement for Beckhoff Software Products

[»

& 1 Subject Matter of thiz Agreement

(1) Licen=or grants Licenzee a non-tranzsferable, non-exclusive right to use the data
processing applications specified in Appendix 1 hereto (herginafter called "Software™) under
the conditions specified hereinafter.

(2} The Software ghall be delivered to Licensee on machine-readable recording media as
specified in Appendix 1, on which it iz recorded as an object program in an executable status.
One copy of the user documentation shall be part of the application and it shall be delivered to
Licensee in printed form, or also on a machine-readable recording medium or online. The form
the user documentation is delivered in iz specified in Appendix 1. The Software and the
documentation are hereinafter called "License Materials™. 57

@ I accept the terms in the license agreement

(71 I do not accept the terms in the license agreement

InstallShield

<Back || MNext> || cancel |

3. Enter your user data.

Customer Information

Please enter your information.

User Mame:

IMax Mustermann

Qrganization:

I ustermann Inc.

InstallShield

<Back || MNext> || cancel

10 Version: 1.5.1 TF6310

BECKHOFF

Installation

4. If you want to install the full version of the TwinCAT 3 function, select Complete as the installation type.

If you want to install the TwinCAT 3 function components separately, select Custom.

Setup Type
Choose the setup type that best suits your needs,

Please select a setup type.

@ Complete

advanced users,

InstallShield

All program features will be installed to all installed TwinCAT 3
versions on your system. (Requires the most disk space.)

Choose which program features you want installed and to which
TwinCAT 3 version they will be installed. Recommended for

< Back]I

Mext >

I [Cancel

5. Click Next, then Install to start the installation.

Ready to Install the Program
The wizard is ready to beqin installation.

Click Install to begin the installation.

exit the wizard.

InstallShield

If you want to review or change any of your installation settings, dick Back. Click Cancel to

< Back “

Install

] [Cancel

= A dialog box informs you that the TwinCAT system must be stopped to proceed with the installation.

TF6310 Version: 1.5.1

11

Installation BEGKHOFF

6. Confirm the dialog with Yes.

e

"

TwinCAT Server Installation 3

TwinCAT systern has to be stopped before proceeding with installation,
Should TwinCAT be stopped?

ey [

7. Click Finish to exit the setup.

Beckhoff Setup Completed

| The Beckhoff Setup has successfully installed TF 330
Click Finish to exit the wizard.

[T] show the Windows Installer log

= The TwinCAT 3 function has been installed successfully.

3.3 Installation from TwinCAT 4026

TwinCAT Package Manager

If you are using TwinCAT 3.1 Build 4026 (and higher) on the Microsoft Windows operating system, you can
install this function via the TwinCAT Package Manager, see installation documentation.

Normally you install the function via the corresponding workload; however, you can also install the packages
contained in the workload individually. This documentation briefly describes the installation process via the
workload.

Command line program TcPkg

You can use the TcPkg Command Line Interface (CLI) to display the available workloads on the system:
tcpkg list TF6310

You can use the following command to install the workload of the TF6770 loT Websockets function.

tcpkg install TF6310.Tcplp.XAE
tcpkg install TF6310.Tcplp.XAR

TwinCAT Package Manager Ul

12 Version: 1.5.1 TF6310

https://infosys.beckhoff.com/content/1033/tc3_installation/index.html?id=3481283926605773347

BEGKHOFF Installation

You can use the User Interface (Ul) to display all available workloads and install them if required.
To do this, follow the corresponding instructions in the interface.

3.4 Installation Windows CE

This section describes, how you can install the TwinCAT 3 Function TF6310 TCP/IP on a Beckhoff
Embedded PC Controller based on Windows CE.

The setup process consists of four steps:
» Download of the setup file [» 13]
 |nstallation on a host computer [» 13]
 Transferring the executable to the Windows CE device [»_13]
» Software installation [P_14]

The last paragraph of this section describes the Software upgrade [P _14].

Download of the setup file

The CAB installation files for Windows CE are part of the TF6310 TCP/IP setup. Therefore you only need to

download one setup file from www.beckhoff.com which contains binaries for Windows XP, Windows 7 and
Windows CE (x86 and Arm®).

The installation procedure of the TF6310 TCP/IP setup is described in the regular installation article (see

Installation [»_9]).

Installation on a host computer

After installation, the install folder contains three directories - each one for a different hardware platform:
* CE-Arm®: Arm®-based Embedded Controllers running Windows CE, e.g. CX8090, CX9020
» CE-X86: X86-based Embedded Controllers running Windows CE, e.g. CX50xx. CX20x0
* Win32: Embedded Controllers running Windows XP, Windows 7 or Windows Embedded Standard

Include in library « Share with - Burn MNew folder 4= » [0 @

Organize »

-

Mame Date modified Type Size
. CE-ARM 26.03.2013 08:55 File folder
. CE-X86 26.03.2013 08:55 File folder

, Win32 21.02.201313:31 File folder

The CE-Arm® and CE-X86 folders contain the TF6310 CAB files for Windows CE corresponding to the
hardware platform of your Windows CE device. This file needs to be transferred to the Windows CE device.

Transferring the executable to the Windows CE device

Transfer the corresponding executable to you Windows CE device. This can be done via one of the following
ways:

* via a Shared Folder

* via the integrated FTP-Server

 via ActiveSync

TF6310 Version: 1.5.1 13

http://www.beckhoff.com

Installation BEGKHOFF

 via a CF card

For more information, please consult the "Windows CE" section in the Beckhoff Information System.

Software installation

After the file has been transferred via one of the above methods, execute the file and acknowledge the
following dialog with Ok. Restart your Windows CE device after the installation has finished.

After the restart has been completed, the executable files of TF6310 are started automatically in the
background.

The software is installed in the following directory on the CE device:

\Hard Disk\TwinCAT\Functions\TF6310-TCP-IP

Upgrade instructions
If you have already a version of TF6310 installed on your Windows CE device, you need to perform the
following things on the Windows CE device to upgrade to a newer version:
1. Open the CE Explorer by clicking on Start > Run and entering "explorer".
. Navigate to \Hard Disk\TwinCAT\Functions\TF6310-TCP-IP\Server.
. Rename TcplpServer.exe to TeplpServer.old.
. Restart the Windows CE device.
. Transfer the new CAB-File to the CE device.
. Execute the CAB-File and install the new version.
. Delete TcplpServer.old.
. Restart the Windows CE device.
= After the restart is complete, the new version is active.

0 N O 0ok~ WDN

3.5 Licensing

The TwinCAT 3 function can be activated as a full version or as a 7-day test version. Both license types can
be activated via the TwinCAT 3 development environment (XAE).

Licensing the full version of a TwinCAT 3 Function

A description of the procedure to license a full version can be found in the Beckhoff Information System in
the documentation "TwinCAT 3 Licensing".

Licensing the 7-day test version of a TwinCAT 3 Function

(
1 A 7-day test version cannot be enabled for a TwinCAT 3 license dongle.

1. Start the TwinCAT 3 development environment (XAE).
2. Open an existing TwinCAT 3 project or create a new project.

3. If you want to activate the license for a remote device, set the desired target system. To do this, select
the target system from the Choose Target System drop-down list in the toolbar.

= The licensing settings always refer to the selected target system. When the project is activated on
the target system, the corresponding TwinCAT 3 licenses are automatically copied to this system.

14 Version: 1.5.1 TF6310

https://infosys.beckhoff.com/content/1033/tc3_licensing/117093592658046731.html?id=5546616718344501207
https://infosys.beckhoff.com/content/1033/tc3_licensing/3511048971.html

BEGKHOFF Installation

4. In the Solution Explorer, double-click License in the SYSTEM subtree.

Solution Explorer * 0 X

@ o-a|s =
Search Solution Explorer (Ctrl+0) P

m Solution TwinCAT SampleProject’ (1 project)
4 Iii TwinCAT SampleProject
4 || SYSTEM
¥ License
b @) Real-Time
b B Tasks
si= Routes
215 Type System
TcCOM Objects

= The TwinCAT 3 license manager opens.

5. Open the Manage Licenses tab. In the Add License column, check the check box for the license you
want to add to your project (e.g. "TF4100 TC3 Controller Toolbox").

Order Information (Rurtime) Manage Licenses Project Licenses Online Licenses

[] Dizable automatic detection of required licenses for project

Order Mo License |Add License
TF3e01 TC3 Condition Menitoring Level 2 I_ cpu license
TF3630 TC3 Power Manitoring I_ cpu license
TF3630 TC3 Filter I_ cpu license
TF3200 TC3 Machine Learning Inference Engine I_ cpu license
TF3210 TC3 Meural Metwork Inference Engine I_ cpu license
TF3900 TC3 Solar-Position-Algorithm I_ cpu license
TF4100 TC3 Controller Toolbox
TR4110 TC3 Temperature-Controller I_ cpu license
TF4300 TC3 Speech I_ cpu license

6. Open the Order Information (Runtime) tab.

= In the tabular overview of licenses, the previously selected license is displayed with the status
“missing”.

TF6310 Version: 1.5.1 15

Installation BEGKHOFF

7. Click 7-Day Trial License... to activate the 7-day trial license.

Order Information (Runtime) ~ Manage Licenses Project Licenses Orline Licenses

License Device Target (Hardware 1d) v Add...
System Id: Platform:
2DB25408-B4CD-31DF-5488-6A30D9B453EF15 | other (31)

License Request

Provider: Beckhoff Automation w Generate File. ..
License |d: | Customer Id: |
Comment: | |
License Activation

7 Days Tral License... I License Response File...

= A dialog box opens, prompting you to enter the security code displayed in the dialog.

Enter Security Code *

Fleaze type the following 5 characters: k.

| Ke8T4 |

8. Enter the code exactly as it is displayed and confirm the entry.
9. Confirm the subsequent dialog, which indicates the successful activation.
= In the tabular overview of licenses, the license status now indicates the expiry date of the license.
10. Restart the TwinCAT system.
= The 7-day trial version is enabled.

3.6 Migration from TwinCAT 2

If you would like to migrate an existing TwinCAT 2 PLC project which uses one of the TCP/IP Server's PLC
libraries, you need to perform some manual steps to ensure that the TwinCAT 3 PLC converter can process
the TwinCAT 2 project file (*.pro). In TwinCAT 2, the Function TCP/IP Server is delivered with three PLC

libraries:
* Tcplp.lib
» TcSocketHelper.lib
e TcSnmp.lib

By default, these library files are installed in C:\TwinCAT\PIc\Lib\. Depending on the library used in your PLC
project, you need to copy the corresponding library file to C:\TwinCAT3\Components\Plc\Converter\Lib and

then perform the following steps:

1. Open the TwinCAT Engineering.
2. Create a new TwinCAT 3 solution.

16 Version: 1.5.1 TF6310

BEGKHOFF Installation

3. Right-click on the "PLC" node and select Add Existing Item in the context menu that opens.

Solution Explorer
=
E Solution TwinCAT Project22' (1 project)

4[5l TwinCAT Project22
bl SYSTEM
MOTION

- PLC|
3 Add New Iem... Ctrl+Shift+A SAFETY
] Add Existing Item... Shift+ 4+ A C++

Add Project from Source Control... Vo
I Paste Ctrl+V

Paste with Links
[z Import PLCopenXML...

4. In the Open dialog, select the file type "Plc 2.x Project Import (*.pro)", browse to the folder containing
your TwinCAT 2 PLC project and select the corresponding.pro file and click Open.

i ™
oo Open g
G-

Organize * Mew folder =« O @
43 Favorites Mame Date medified Type
m Desktop M MNET 29.06.2012 11:07 File folder
1 Software || Teplp_CLIEMT.pro 19.03.2012 13:52 PRO File
1 Public | | Teplp_SERVER.pro 19.03.2012 13:52 PRO File

| Workspace

. Workspace - Infosys
1. Workspace - TFS

| Books

@ Images

1% MAS-SERVER

| 43 SharePoint Sites

&% SkyDrive

~ [i | C

File name: Teplp_SERVER.pro - ’PIC 2. Project Import (*.pro) VI

I Open I ’ Cancel])

TF6310 Version: 1.5.1 17

Installation BEGKHOFF

= TwinCAT 3 starts the converter process and finally displays the converted PLC project under the “PLC*
node.

(|

B | TwinCAT PLC Control

|'\

Compiling ...

Interfaces

L &

Solution Explorer 0 x

&
|,; Solution "TwinCAT Project22' (1 project)
4[] TwinCAT Project22
- @l SYSTEM
MOTION
4 PLC
4 Teplp_SERVER
. [=] Tcplp_SERVER Project
[28] Tcplp_SERVER Instance
T SAFETY

EC++
> & Vo

18 Version: 1.5.1 TF6310

BEGKHOFF Technical introduction

4 Technical introduction

4.1 Quick Start

The following chapter provides a quick introduction to the TwinCAT TCP/IP product. The instructions are

based on the corresponding download in our samples [P 64] and can be downloaded as a finished TwinCAT
project. The individual components of the application are explained in more detail below.

The TwinCAT project implements a TCP/IP Client/Server application, which sends a message to the server
as a client and receives the same message back accordingly. The TwinCAT project can be activated directly
and starts its program execution immediately. Communication between client and server takes place via
localhost.

MAIN

In the MAIN program, the corresponding variable declarations are first made for the client and the server.
Client and server are encapsulated by two function blocks, which use the corresponding function blocks from
the Tc2_Tcplp library to call the socket functions (Send, Receive, Listen, Connect, etc.).

The following variables are declared for the client:

fbTcpClientl: FB TCPClient;
sClientlSendData : STRING(255);

nServerlPort : UDINT := 12000;
sServerlHost : T IPv4Addr := '';
bStartClientlCommunication : BOOL := TRUE;
tClientlCycleTime : TIME := T#0.5S;

bClientlSendTrigger : BOOL;
bClientlConnected : BOOL;
sClientlReceivedData : STRING (255) ;
bClientlBusy : BOOL;

bClientErrorl : BOOL;
nClientlErrorIDl1 : UDINT;

The following variables are declared for the server:

fbTcpEchoServerl : FB TCPServer;
sServerReceivedData : STRING(255);
bStartServerlCommunication : BOOL := TRUE;
bServerlConnected : BOOL;

sServerData : STRING(255);

bServerlBusy : BOOL;

bServerlError : BOOL;

nServerlErrorID : UDINT;

The message to be sent is saved in the variable sClient1SendData. Later in the program, the value of this
variable is changed cyclically. Specifically, a counter value is appended to the variable using string
concatenation.

IF bAutogenerateData AND bClientlConnected THEN

fbTimerl (IN:= NOT fbTimerl.Q, PT:= tClientlCycleTime, Q=> , ET=>);
IF fbTimerl.Q THEN

sClientlSendData := Concat ('TestString No.', UDINT TO_STRING (nCnt));
fbTcpClientl.bSendTrigger := TRUE;
nCnt := nCnt + 1;
ELSE
fbTcpClientl.bSendTrigger := FALSE;
END IF
END IF

The cycle in which the variable value is set and sent is defined by the timer fbTimer1. The send process is
started by setting the variable fbTcpClient1.bSendTrigger.

The server application is represented by the function block instance fbTcpEchoServer1. This is activated
cyclically in the program flow so that messages can be received via the server's state machine.

fbTcpEchoServerl (
sLocalHost := '',
nLocalPort := nServerlPort,
bStartCommunication := bStartServerlCommunication,

bConnected => bServerlConnected,
sSendData => sServerData,

TF6310 Version: 1.5.1 19

Technical introduction BEGKHOFF

bBusy=> bServerlBusy,
bError=> bServerlError,
nErrorID=> nServerlErrorID);

The incoming TCP port of the server is defined via the nLocalPort input. The client connects to this port to
exchange data with the server. If you modify this sample so that the communication between client and
server is to be carried out via the network, make sure that the server port in your system's firewall is open.

® Closing the sockets

When the TwinCAT project is restarted, the variable blnit causes all active socket connections to be
closed. This is done at the beginning of the program execution.

FB_TCPServer

This function block encapsulates the server application and uses the function blocks from the Tc2_Tcplp
library to set up a socket connection for the server, listen for incoming messages and send back a

corresponding response. Specifically, the function blocks FB SocketAccept [P 271, FB SocketListen [P 26],

FB SocketReceive [P 30], FB SocketSend [P 28], FB SocketClose [P 24] and FB SocketCloseAll [» 25] are
used for this purpose.

The internal state machine of the function block is based on the following steps:

State Description

0 Initial state. The process is started via the variable bStartCommunication.

10 In this state, the socket listener is started, i.e. the server application connects to the
defined TCP port.

20 In this state, an incoming socket connection is accepted.

30 In this state, a message is received from the connected client.

35 In this state, a message is sent back to the connected client.

40-42 The socket connections are closed in these states.

FB_TCPClient

This function block encapsulates the client application and uses the function blocks from the Tc2_Tcplp
library to establish a connection to the server, send a message to the server and receive a corresponding

response. Specifically, the function blocks FB SocketConnect [P 23], FB SocketSend [P 28],
FB SocketReceive [P 30] and FB SocketClose [P 24] are used for this purpose.

The internal state machine of the function block is based on the following steps:

State Description

0 Initial state. The process is started via the variable bStartCommunication.
10 In this state, a connection is established with the server.

15 In this state, a message is sent to the server and the response is processed.
20 In this state, the connection to the server is closed.

4.2 Protocols

In this section you will find a general overview of the TCP and UDP transmission protocols and a link to the
corresponding PLC libraries that are required to integrate the protocols. Both transmission protocols are part
of the Internet Protocol Suite and are therefore of great importance for our everyday communication, e.g. via
the Internet.

Transmission Control Protocol (TCP)

The TCP protocol is a connection-oriented transmission protocol (OSI Layer 4), comparable to a telephone
connection, in which callers must first establish a connection before data can be transmitted. Data streams
(bytes) can be reliably transferred on request via TCP, which is why it is also referred to as a "data stream-
oriented transfer protocol" in this context. The TCP protocol is used in networks where the data sent by a
client or server requires confirmation from the other party. The TCP protocol is well suited for transferring

20 Version: 1.5.1 TF6310

BEGKHOFF Technical introduction

large amounts of data or data streams without a defined start/end identifier. For the transmitter this is not a
problem since he knows how many data bytes are transmitted. However, the receiver is unable to detect
where a message ends within the data stream and where the next data stream starts. A read call on the
receiver side only supplies the data currently in the receive buffer (this may be less or more than the data
block sent by the other device). The transmitter has to specify a message structure that is known to the
receiver and can be interpreted. In simple cases the message structure may consist of the data and a final
control character (e.g. carriage return). The final control character indicates the end of a message. A
possible message structure, which is often used for the transmission of binary data with a variable length,
can be defined as follows: A special control character (a so-called start delimiter) and the data length of the
subsequent data are entered in the first data bytes. This enables the receiver to detect the start and end of
the message.

TCP/IP Client
A minimum TCP/IP client implementation within the PLC requires the following function blocks:

« An instance of the function blocks FB SocketConnect [P 23] and FB SocketClose [P 24] for
establishing and terminating the connection to the remote server (tip: the function block

FB ClientServerConnection [P 46] combines the functionality of both function blocks).

* An instance of the function block FB SocketSend [» 28] and/or FB SocketReceive [P 30] for data
exchange (sending and receiving) with the remote server.

TCP/IP server
A minimum TCP/IP server implementation within the PLC requires the following function blocks:

* An instance of the FB_SocketListen [»_26] function block for opening the listener socket:

» An instance of the function blocks FB SocketAccept [P 27] and FB SocketClose [P 24] (tip:

FB ServerClientConnection [P 48] combines the functionality of all three function blocks) for
establishing and terminating the connection(s) to the remote clients:

» For data exchange (sending and receiving) with the remote clients, one instance of the function block
FB SocketSend [P 28] and/or FB_SocketReceive [P 30]:

* In each PLC runtime system in which you open a socket, one instance of the function block
FB SocketCloseAll [» 251:

The instances of the function blocks FB_SocketAccept [P 27] and FB_SocketReceive [» 30] are called
cyclically (polling), all others as required.

User Datagram Protocol (UDP)

UDP is a connection-less protocaol, i.e. data is sent between network devices without an explicit connection.
UDP uses a simple transmission model without implicitly defining workflows for handshaking, reliability, data
ordering or congestion control. Even though the above description suggests that UDP datagrams arrive
unsolicited or duplicated or cause congestion on the data line, the protocol is preferred over TCP in some
cases, especially for real-time communication, as TCP features require more computing power and therefore
more time. The UDP protocol is well suited to sending small amounts of data due to its connection-less
nature. UDP is a "packet-oriented/message-oriented transport protocol", i.e. the sent data block is received
on the receiver side as a complete data block.

The following function blocks are required for a minimum UDP client/server implementation:

» For opening and closing a UDP socket, one instance of the function blocks FB SocketUdpCreate
[»31] and FB SocketClose [P_24] (tip: FB_ConnectionlessSocket [P _51] combines the functionality of
both function blocks):

» An instance of the function block FB SocketUdpSendTo [P_32] and/or FB SocketUdpReceiveFrom
[»_34] for data exchange (sending and receiving) with other devices:

* In each PLC runtime system in which you open a UDP socket, one instance of the function block
FB SocketCloseAll [» 25]:

The instances of the function block FB SocketUdpReceiveFrom [»_34] are called cyclically (polling), all others
as required.

TF6310 Version: 1.5.1 21

Technical introduction BECKHOFF

See also: Samples [P 64]

22 Version: 1.5.1 TF6310

BECKHOFF

PLC API

5 PLC API

5.1

Function blocks

5.1.1 FB_SocketConnect
FB_SocketConnect

—sSryMetld bBusyr—

— sRemoteHost bErrarf—

—nRemotePart nErrid f—

— bBxecute hSocketf—

—tTimeout

Using the function block FB_SocketConnect, a local client can establish a new TCP/IP connection to a
remote server via the TwinCAT TCP/IP Connection Server. If successful, a new socket is opened, and the
associated connection handle is returned at the hSocket output. The connection handle is required by the

function blocks FB SocketSend [P 28] and FB_SocketReceive [P 30], for example, in order to exchange data

with a remote server. If a connection is no longer required, it can be closed with the function block
FB SocketClose [P 24]. Several clients can establish a connection with the remote server at the same time.

For each new client, a new socket is opened and a new connection handle is returned. The TwinCAT TCP/
IP Connection Server automatically assigns a new IP port number for each client.

Inputs
VAR _INPUT
sSrvNetId : T_AmsNetId := ;
sRemoteHost : T IPv4Addr := ;
nRemotePort : UDINT;
bExecute : BOOL;
tTimeout : TIME := T#45s; (*!!!¥)
END VAR
Name Type Description
sSrvNetld T_AmsNetld String containing the network address of the TwinCAT TCP/
IP Connection Server. For the local computer (default) an empty string
may be specified.
sRemoteHost T_IPv4Addr IP address (Ipv4) of the remote server in the form of a string (e.g.
'172.33.5.1"). An empty string can be entered on the local computer for
a server.
nRemotePort UDINT IP port number of the remote server (e.g. 200).
bExecute BOOL The function block is activated by a positive edge at this input.
tTimeout TIME Maximum time allowed for the execution of the function block.

® Setting the maximum execution time of the function block

1

Do not set the value "tTimeout" too low, as timeout periods of > 30 s can occur in case of a network
interruption. If the value is too low, command execution would be interrupted prematurely, and ADS

error code 1861 (timeout elapsed) would be returned instead of the Winsocket error
WSAETIMEDOUT.

E QOutputs
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
hSocket : T HSOCKET;
END_ VAR
TF6310 Version: 1.5.1 23

PLC API BECKHOFF

Name Type Description

bBusy BOOL This output is active if the function block is activated. It remains active
until acknowledgement.

bError BOOL If an error should occur during the transfer of the command, then this
output is set once the bBusy output was reset.

nErrid UDINT If an bError output is set, this parameter returns the TwinCAT TCP/
I[P Connection Server error number [P_101].

hSocket T_HSOCKET | TCP/IP connection handle [P 61] to the newly opened local client
socket.

Requirements

Development environment

Target system type

PLC libraries to include (cate-
gory group)

TwinCAT v3.1.0

PC, or CX (x86, X64, Arm®)

Tc2_Tcplp (communication)

5.1.2 FB_SocketClose
FB_SocketClose

—s5rviNetld bBusyft—

— hSocket bErrorf—

— bExecute nErrid f—

—tTimeout

The function block FB_SocketClose can be used to close an open TCP/IP or UDP socket.

TCPI/IP: The listener socket is opened with the function block FB SocketListen [»_26], a local client socket
with FB _SocketConnect [P 23] and a remote client socket with FB_SocketAccept [P 27].

UDP: The UDP socket is opened with the function block FB SocketUdpCreate [»_31].

Inputs
VAR _INPUT
sSrvNetId : T _AmsNetId := '';
hSocket : T _HSOCKET;
bExecute : BOOL;
tTimeout : TIME := T#5s;
END VAR
Name Type Description
sSrvNetld | T_AmsNetld String containing the network address of the TwinCAT TCP/
IP Connection Server. For the local computer (default) an empty string may
be specified.
hSocket T_HSOCKET |« TCP/IP: Connection handle [» 61] of the listener, remote or local client
socket to be closed.
» UDP: Connection handle of the UDP socket.
bExecute | BOOL The function block is enabled by a positive edge at this input.
tTimeout TIME Maximum time allowed for the execution of the function block.
E- Qutputs
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
END VAR

24

Version: 1.5.1 TF6310

BECKHOFF PLC API

Name Type Description

bBusy BOOL This output is active if the function block is activated. It remains active until
acknowledgement.

bError BOOL If an error should occur during the transfer of the command, then this output is
set once the bBusy output was reset.

nErrid UDINT If an bError output is set, this parameter returns the TwinCAT TCP/
IP Connection Server error number [P_101].

Requirements

Development environment

Target system type

PLC libraries to include (cate-
gory group)

TwinCAT v3.1.0

PC, or CX (x86, X64, Arm®)

Tc2_Tcplp (communication)

5.1.3 FB_SocketCloseAll
FB_SocketCloseAll

—s5rviNetld bBusyft—

— bExecute bErrorg—

—{tTimeout nErrld f—

If TwinCAT is restarted or stopped, the TwinCAT TCP/IP Connection Server is also stopped. Any open
sockets (TCP/IP and UDP connection handles) are closed automatically. The PLC program is reset after a
"PLC reset", a "Rebuild all..." or a new "Download", and the information about already opened sockets
(connection handles) is no longer available in the PLC. Any open connections can then no longer be closed

properly.

The function block FB_SocketCloseAll can be used to close all connection handles (TCP/IP and UDP
sockets) that were opened by a PLC runtime system. This means that, if FB_SocketCloseAll is called in one
of the tasks of the first runtime systems (port 801), all sockets that were opened in the first runtime system
are closed. In each PLC runtime system that uses the socket function blocks, an instance of
FB_SocketCloseAll should be called during the PLC start.

Inputs
VAR INPUT
sSrvNetId : T AmsNetId := '';
bExecute : BOOL;
tTimeout : TIME := T#5s;
END VAR
Name Type Description
sSrvNetld | T_AmsNetld String containing the network address of the TwinCAT TCP/
IP Connection Server. For the local computer (default) an empty string may
be specified.
bExecute |BOOL The function block is enabled by a positive edge at this input.
tTimeout TIME Maximum time allowed for the execution of the function block.
E- Qutputs
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
END_VAR

TF6310 Version: 1.5.1 25

PLC AP BECKHOFF

Name Type Description

bBusy BOOL This output is active if the function block is activated. It remains active until
acknowledgement.

bError BOOL If an error should occur during the transfer of the command, then this output is
set once the bBusy output was reset.

nErrid UDINT If an bError output is set, this parameter returns the TwinCAT TCP/
IP Connection Server error number [P_101].

Sample of an implementation in ST

The following program code is used to properly close the connection handles (sockets) that were open
before a "PLC reset" or "Download" before a PLC restart.

PROGRAM MAIN

VAR
fbSocketCloseAll : FB SocketCloseAll;
bCloseAll : BOOL := TRUE;
END VAR
IF bCloseAll THEN(*On PLC reset or program download close all old connections *)
bCloseAll := FALSE;
fbSocketCloseAll (sSrvNetId:= '', bExecute:= TRUE, tTimeout:= T#10s);
ELSE
fbSocketCloseAll (bExecute:= FALSE);
END IF

IF NOT fbSocketCloseAll.bBusy THEN
(¥coo

. continue program execution...
500%)

END IF

Requirements

Development environment Target system type PLC libraries to include (cate-
gory group)
TwinCAT v3.1.0 PC, or CX (x86, X64, Arm®) Tc2_Tcplp (communication)
5.1.4 FB_SocketListen
FB_SocketListen
—=5rwMetld bBusyr—
—{sLocalHost bErrorf—
—{nLocalPort nErrld —
— bExecute hListenerf—
—itTimeout

Using the function block FB_SocketListen, a new listener socket can be opened via the TwinCAT TCP/

IP Connection Server. Via a listener socket, the TwinCAT TCP/IP Connection Server can 'listen’ for incoming
connection requests from remote clients. If successful, the associated connection handle is returned at the
hListner output. This handle is required by the function block FB SocketAccept [P 27]. If a listener socket is
no longer required, it can be closed with the function block FB SocketClose [P _24]. The listener sockets on an
individual computer must have unique IP port numbers.

Inputs

VAR INPUT
sSrvNetId : T AmsNetId := '"';
sLocalHost : T IPv4Addr := ''
nLocalPort : UDINT;
bExecute : BOOL;
tTimeout : TIME := T#5s;

END VAR

26 Version: 1.5.1 TF6310

BECKHOFF PLC API

Name Type Description

sSrvNetld T_AmsNetld |String containing the network address of the TwinCAT TCP/

IP Connection Server. For the local computer (default) an empty string may be
specified.

sLocalHost |T_IPv4Addr |Local server IP address (Ipv4) in the form of a string (e.g. '172.13.15.2"). For a
server on the local computer (default), an empty string may be entered.

nLocalPort UDINT Local server IP port (e.g. 200).
bExecute BOOL The function block is enabled by a positive edge at this input.
tTimeout TIME Maximum time allowed for the execution of the function block.
& Qutputs
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
hListener : T HSOCKET;
END_VAR
Name Type Description
bBusy BOOL This output is active if the function block is activated. It remains active until
acknowledgement.
bError BOOL If an error should occur during the transfer of the command, then this output is
set once the bBusy output was reset.
nErrid UDINT If an bError output is set, this parameter returns the TwinCAT TCP/
IP Connection Server error number [»_101].
hListener |T_HSOCKE |Connection handle [61] to the new listener socket.
T

Requirements

Development environment Target system type PLC libraries to include (cate-
gory group)
TwinCAT v3.1.0 PC, or CX (x86, X64, Arm®) Tc2_Tcplp (communication)

5.1.5 FB_SocketAccept

FB_SocketAccept
—sSryMetld bAccepted—
— hListener bBusy—
— bExecute bErrorg—
—{tTimeout nErrid f—
hSockett—

The remote client connection requests arriving at the TwinCAT TCP/IP Connection Server have to be
acknowledged (accepted). The function block FB_SocketAccept accepts the incoming remote client
connection requests, opens a new remote client socket and returns the associated connection handle. The
connection handle is required by the function blocks FB SocketSend [P 28] and FB_SocketReceive [P 30], for
example, in order to exchange data with a remote client. All incoming connection requests first have to be
accepted. If a connection is no longer required or undesirable, it can be closed with the function block

FB SocketClose [»_24].

A server implementation requires at least one instance of this function block. This instance has to be called
cyclically (polling) from a PLC task. The function block can be activated via a positive edge at the bExecute
input (e.g. every 5 seconds).

If successful, the bAccepted output is set, and the connection handle to the new remote client is returned at
the hSocket output. No error is returned if there are no new remote client connection requests. Several
remote clients can establish a connection with the server at the same time. The connection handles of

TF6310 Version: 1.5.1 27

PLC AP BECKHOFF

several remote clients can be retrieved sequentially via several function block calls. Each connection handle
for a remote client can only be retrieved once. It is recommended to keep the connection handles in a list
(array). New connections are added to the list, and closed connections must be removed from the list.

Inputs
VAR INPUT
sSrvNetId : T AmsNetId := '';
hListener : T _HSOCKET;
bExecute : BOOL;
tTimeout : TIME := T#5s;
END VAR
Name Type Description
sSrvNetld T_AmsNetld |String containing the network address of the TwinCAT TCP/
IP Connection Server. For the local computer (default) an empty string may be
specified.
hListener T_HSOCKE |Connection handle [» 61] of the listener socket. This handle must first be
T requested via the function block FB SocketListen [»_26].
bExecute BOOL The function block is enabled by a positive edge at this input.
tTimeout TIME Maximum time allowed for the execution of the function block.
E- Qutputs
VAR OUTPUT
bAccepted : BOOL;
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
hSocket : T_HSOCKET;
END VAR
Name Type Description
bAccepted |BOOL This output is set if a new connection to a remote client was established.
bBusy BOOL This output is active if the function block is activated. It remains active until
acknowledgement.
bError BOOL If an error should occur during the transfer of the command, then this output is
set once the bBusy output was reset.
nErrid UDINT If an bError output is set, this parameter returns the TwinCAT TCP/
IP Connection Server error number [»_101].
hSocket T_HSOCKE |Connection handle [» 61] of a new remote client.
T

Requirements

Development environment Target system type PLC libraries to include (cate-
gory group)
TwinCAT v3.1.0 PC, or CX (x86, X64, Arm®) Tc2_Tcplp (communication)

5.1.6 FB_SocketSend

FB_SocketSend
—s5rviNetld bBusy—
— hSocket bErrorf—
—chLen nErrld f—
—p5rc
— bExecute
—tTimeout

28 Version: 1.5.1 TF6310

BECKHOFF

PLC API

Using the function block FB_SocketSend, data can be sent to a remote client or remote server via the
TwinCAT TCP/IP Connection Server. A remote client connection will first have to be established via the

function block FB SocketAccept [P 27], or a remote server connection via the function block

FB SocketCo

nnect [» 23].

Inputs
VAR INPUT
sSrvNetId : T AmsNetId := '';
hSocket : T HSOCKET;
cbLen : UDINT;
pSrc : POINTER TO BYTE;
bExecute : BOOL;
tTimeout : TIME := T#5s;
END_ VAR
Name Type Description
sSrvNetld T_AmsNetld String containing the network address of the TwinCAT TCP/
IP Connection Server. For the local computer (default) an empty string
may be specified.
hSocket T_HSOCKET Connection handle [» 61] of the communication partner to which data
are to be sent.
cbLen UDINT Number of date to be sent in bytes.
pSrc POINTER TO BYT |Address (pointer) of the send buffer.
E
bExecute BOOL The function block is enabled by a positive edge at this input.
tTimeout TIME Maximum time allowed for the execution of the function block.
@® Setting the execution time of the function block

1

If the transmit buffer of the socket is full, for example because the remote communication partner
receives the transmitted data not quickly enough or large quantities of data are transmitted, the

FB_SocketSend function block will return ADS timeout error 1861 after the tTimeout time. In this
case, the value of the tTimeout input variable has to be increased accordingly.

E- Qutputs
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
END VAR
Name Type Description
bBusy BOOL This output is active if the function block is activated. It remains active
until acknowledgement.
bError BOOL If an error should occur during the transfer of the command, then this
output is set once the bBusy output was reset.
nErrld UDINT If an bError output is set, this parameter returns the TwinCAT TCP/
I[P Connection Server error number [P_101].

Requirements

Development environment

Target system type

PLC libraries to include (cate-
gory group)

TwinCAT v3.1.0

PC, or CX (x86, X64, Arm®)

Tc2_Tcplp (communication)

TF6310

Version: 1.5.1

29

PLC AP BECKHOFF

51.7 FB_SocketReceive

FB_SocketReceive
—{=5rwhetld bBusy—
—thSocket bErrorf—
—lchlLen nErrld f—
—pDest nRecBytest—
—bExecute
—tTimeout

Using the function block FB_SocketReceive, data from a remote client or remote server can be received via
the TwinCAT TCP/IP Connection Server. A remote client connection will first have to be established via the

function block FB SocketAccept [P 27], and a remote server connection via the function block

FB SocketConnect [P_23]. The data can be received or sent in fragmented form (i.e. in several packets) within
a TCP/IP network. It is therefore possible that not all data may be received with a single call of the
FB_SocketReceive instance. For this reason, the instance has to be called cyclically (polling) within the PLC
task, until all required data have been received. During this process, an rising edge is generated at the
bExecute input, e.g. every 100 ms. If successful, the data received last are copied into the receive buffer.
The nRecBytes output returns the number of the last successfully received data bytes. If no new data could
be read during the last call, the function block returns no error and nRecBytes == zero.

In a simple protocol for receiving, for example, a null-terminated string on a remote server, the function block
FB_SocketReceive, for example, will have to be called repeatedly until the null termination was detected in
the data received.

@® Settimeout value

1 If the remote device was disconnected from the TCP/IP network (on the remote side only) while the
local device is still connected to the TCP/IP network, the function block FB_SocketReceive returns
no error and no data. The open socket still exists, but no data are received. The application may
wait forever for data in this case. It is recommended to implement timeout monitoring in the PLC
application. If not all data were received after a certain period, e.g. 10 seconds, the connection has
to be closed and reinitialized.

Inputs
VAR INPUT
sSrvNetId : T AmsNetId := '';
hSocket : T HSOCKET;
cbLen : UDINT;
pDest : POINTER TO BYTE;
bExecute : BOOL;
tTimeout : TIME := T#5s;
END_VAR
Name Type Description

sSrvNetld T_AmsNetld String containing the network address of the TwinCAT TCP/
IP Connection Server. For the local computer (default) an empty string may
be specified.

hSocket T_HSOCKET Connection handle [» 61] of the communication partner from which data
are to be received.

cbLen UDINT Maximum available buffer size (in bytes) for the data to be read.
pDest POINTER TO BY |Address (pointer) of the receive buffer.
TE

bExecute BOOL The function block is enabled by a positive edge at this input.
tTimeout TIME Maximum time allowed for the execution of the function block.
& Qutputs
VAR OUTPUT

bBusy : BOOL;

bError : BOOL;

30 Version: 1.5.1 TF6310

BECKHOFF PLC API

nErrId : UDINT;
nRecBytes : UDINT;

END_VAR

Name Type Description

bBusy BOOL This output is active if the function block is activated. It remains active until
acknowledgement.

bError BOOL If an error should occur during the transfer of the command, then this
output is set once the bBusy output was reset.

nErrid UDINT If an bError output is set, this parameter returns the TwinCAT TCP/
IP Connection Server error number.

nRecBytes |UDINT Number of the last successfully received data bytes.

Requirements

Development environment Target system type PLC libraries to include (cate-
gory group)
TwinCAT v3.1.0 PC, or CX (x86, X64, Arm®) Tc2_Tcplp (communication)
5.1.8 FB_SocketUdpCreate
FB_SocketUdpCreate
—s5rviNetld bBusyf—
—sLocalHost bErrarf—
—nLocalPort nErrId f—
— bBxecute hSocketp—
—tTimeout

The function block FB_SocketUdpCreate can be used to open a client/server socket for the User Datagram
Protocol (UDP). If successful, a new socket is opened, and the associated socket handle is returned at the

hSocket output. The handle is required by the function blocks FB SocketUdpSendTo [»_32] and
FB SocketUdpReceiveFrom [P_34], for example, in order to exchange data with a remote device. If a UDP

socket is no longer required, it can be closed with the function block FB SocketClose [P 24]. The port address
nLocalHost is internally reserved by the TCP/IP Connection Server for the UDP protocol (a "bind" is carried
out). Several network adapters may exist in a PC. The input parameter sLocalHost determines the network
adapter to be used. If the sLocalHost input variable is ignored (empty string), the TCP/IP Connection Server
uses the default network adapter. This is usually the first network adapter from the list of the network
adapters in the Control Panel.

jmio

i

i

Automatically created network connections

If an empty string was specified for sLocalHost when FB_SocketUdpCreate was called and the PC
was disconnected from the network, the system will open a new socket under the software loopback
IP address: '127.0.0.1".

Automatically created network connections with several network adapters

If two or more network adapters are installed in the PC and an empty string was specified as
sLocalHost, and the default network adapter was then disconnected from the network, the new
socket will be opened under the IP address of the second network adapter.

Setting a network address

In order to prevent the sockets from being opened under a different IP address, you can specify the
sLocalHost address explicitly or check the returned address in the handle variable (hSocket), close
the socket and re-open it.

Inputs

VAR_INPUT
sSrvNetId : T AmsNetId := '';
sLocalHost : T IPv4Addr := '';
nLocalPort : UDINT;

TF6310

Version: 1.5.1 31

PLC API BECKHOFF
bExecute : BOOL;
tTimeout : TIME:= T#5s;
END_VAR
Name Type Description
sSrvNetld T _AmsNetld |String containing the network address of the TwinCAT TCP/
IP Connection Server. For the local computer (default) an empty string may
be specified.
sLocalHost T_IPv4Addr |Local IP address (Ipv4) of the UDP client/server socket as a string (e.g.
'172.33.5.1"). An empty string may be specified for the default network
adapter.
nLocalPort UDINT Local IP port number of the UDP client/server socket (e.g. 200).
bExecute BOOL The function block is enabled by a positive edge at this input.
tTimeout TIME Maximum time allowed for the execution of the function block.
& QOutputs
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
hSocket : T_HSOCKET;
END VAR
Name Type Description
bBusy BOOL This output is active if the function block is activated. It remains active until
acknowledgement.
bError BOOL If an error should occur during the transfer of the command, then this output
is set once the bBusy output was reset.
nErrid UDINT If an bError output is set, this parameter returns the TwinCAT TCP/
IP Connection Server error number [»_101].
hSocket T_HSOCKET |Handle of the newly opened UDP client/server socket [» 61].

Requirements

Development environment

Target system type PLC libraries to include (cate-

gory group)

TwinCAT v3.1.0

PC, or CX (x86, X64, Arm®) Tc2_Tcplp (communication)

5.1.9

FB_SocketUdpSendTo

sSrvMetld
hsocket

nRemotePort
chLen

pSrc
bExecute
—tTimeout

sRemoteHost

FB_SocketUdpSendTo

bBusy
bError
nErrld

The function block FB_SocketUdpSendTo can be used to send UDP data to a remote device via the
TwinCAT TCP/IP Connection Server. The UDP socket must first be opened with the function block

FB SocketUdpCreate [» 31].

Inputs
VAR _INPUT
sSrvNetId : T _AmsNetId := ''
hSocket : T_HSOCKET;
sRemoteHost : T IPv4Addr;
32 Version: 1.5.1 TF6310

BECKHOFF PLC API

nRemotePort : UDINT;

cbLen : UDINT;
pSrc : POINTER TO BYTE;
bExecute : BOOL;
tTimeout : TIME := T#5s;
END VAR
Name Type Description
sSrvNetld T_AmsNetld |String containing the network address of the TwinCAT TCP/
IP Connection Server. For the local computer (default) an empty
string may be specified.
hSocket T_HSOCKE |Handle of an opened UDP socket [» 61].
T
sRemoteHost T_IPv4Addr |IP address (Ipv4) in string form (e.g. '172.33.5.1") of the remote
device to which data is to be sent. An empty string can be entered
on the local computer for a device.
nRemotePort UDINT IP port number (e.g. 200) of the remote device to which data is to be
sent.
cbLen UDINT Number of date to be sent in bytes. The maximum number of data
bytes to be sent is limited to 8192 bytes (constant
TCPADS_MAXUDP_BUFFSIZE in the library in order to save
storage space).
pSrc POINTER |Address (pointer) of the send buffer.
TO BYTE
bExecute BOOL The function block is enabled by a positive edge at this input.
tTimeout TIME Maximum time allowed for the execution of the function block.

@® Setting the size of the received data bytes

Available in product version: TwinCAT TCP/IP Connection Server v1.0.50 or higher: The maximum
number of data bytes to be received can be increased (only if absolutely necessary).

TwinCAT 2

1. Redefine global constant in the PLC project (in the sample the maximum number of data bytes to be
received is to be increased to 32000):
VAR GLOBAL CONSTANT
TCPADS MAXUDP BUFFSIZE : UDINT := 32000;
END VAR
2. Activate option Replace constants in the dialog of the TwinCAT PLC control
(Project > Options ... > Build).
3. Rebuild Project.

TwinCAT 3

In TwinCAT 3, this value can be edited via a parameter list of the PLC library (from version 3.3.4.0).

TF6310 Version: 1.5.1 33

PLC AP BECKHOFF
General:
Title: Tc2_Tcplp
Version: 3.34.0
Company: Beckhoff Automation GmbH (Public key token:)
Repository: System (C:\TwinCAT\3. 1\Components\Plc\Managed Libraries)
Description: TwinCAT TCP/IP Connection Server Library

Contents:

Maore...

=] Te2 Tiplp, 3.5.4.0 Beckhoff Automation GmbH) | =
[Te2_Tepip.tme
+-I2) Data types

Inputs/Outputs Documentation

VAR_GLOBAL CONSTANT Param

=12 Global Variables Name Type Inherited from Address Initial Comment
ﬂ: Global_Variables @ TCPADS_MAXUDP_BUFFSIZE UDINT ® =200 |
@ Param |
+-12) pous :
+-12) Version I
i
|
E- Qutputs
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
END VAR
Name Type Description
bBusy BOOL This output is active if the function block is activated. It remains
active until acknowledgement.
bError BOOL If an error should occur during the transfer of the command, then this
output is set once the bBusy output was reset.
nErrid UDINT If an bError output is set, this parameter returns the TwinCAT TCP/
I[P Connection Server error number [P_101].

Requirements

Development environment Target system type PLC libraries to include (cate-
gory group)
TwinCAT v3.1.0 PC, or CX (x86, X64, Arm®) Tc2_Tcplp (communication)

5.1.10 FB_SocketUdpReceiveFrom
FB_SocketUdpReceiveFrom
—sSryMetld bBusy
—hSocket bError
—cbLen nErrlid
—pDest sRemoteHost
— bExecute nRemotePort
—tTimeout nRecBytes

Using the function block FB_SocketUdpReceiveFrom, data from an open UDP socket can be received via
the TwinCAT TCP/IP Connection Server. The UDP socket must first be opened with the function block

FB SocketUdpCreate [» 31]. The instance of the FB_SocketUdpReceive function block has to be called

cyclically (polling) within the PLC task. During this process, an rising edge is generated at the bExecute

34

Version: 1.5.1 TF6310

BECKHOFF PLC API

input, e.g. every 100 ms. If successful, the data received last are copied into the receive buffer. The
nRecBytes output returns the number of the last successfully received data bytes. If no new data could be
read during the last call, the function block returns no error and nRecBytes == zero.

Inputs
VAR INPUT
sSrvNetId : T AmsNetId := '';
hSocket : T _HSOCKET;
cbLen : UDINT;
pDest : POINTER TO BYTE;
bExecute : BOOL;
tTimeout : TIME := T#5s;
END_VAR
Name Type Description
sSrvNetld T_AmsNetld |String containing the network address of the TwinCAT TCP/
IP Connection Server. For the local computer (default) an empty string may be
specified.
hSocket T_HSOCKE |Handle of an opened UDP socket [} 61], whose data are to be received.
T
cbLen UDINT Maximum available buffer size (in bytes) for the data to be read. The maximum
number of data bytes to be received is limited to 8192 bytes (constant
TCPADS_MAXUDP_BUFFSIZE in the library in order to save storage space).
pDest POINTER |Address (pointer) of the receive buffer.
TOBYTE
bExecute BOOL The function block is enabled by a positive edge at this input.
tTimeout TIME Maximum time allowed for the execution of the function block.

@® Setting the size of the received data bytes

Available in product version: TwinCAT TCP/IP Connection Server v1.0.50 or higher: The maximum
number of data bytes to be received can be increased (only if absolutely necessary).

TwinCAT 2

1. Redefine global constant in the PLC project (in the sample the maximum number of data bytes to be
received is to be increased to 32000):
VAR GLOBAL CONSTANT
TCPADS MAXUDP BUFFSIZE : UDINT := 32000;
END VAR
2. Activate option Replace constants in the dialog of the TwinCAT PLC control
(Project > Options ... > Build).
3. Rebuild Project.

TwinCAT 3

In TwinCAT 3, this value can be edited via a parameter list of the PLC library (from version 3.3.4.0).

TF6310 Version: 1.5.1 35

PLC AP BECKHOFF
General:
Title: Tc2_Tcplp
Version: 3.34.0
Company: Beckhoff Automation GmbH (Public key token:)
Repository: System (C:\TwinCAT\3. 1\Components\Plc\Managed Libraries)
Description: TwinCAT TCP/IP Connection Server Library

Contents:

=gl T2 Toplp, 3.3.4.0 Beckhoff Automaton GmbH) || Inputs/Outputs Documentation
[Te2_Tepip.tme

N VAR_GLOBAL CONSTANT Param
+-1J) Data types

Maore...

=12 Global Variables Name Type Inherited from Address Initial Comment
ﬂ: Global_Variables @ TCPADS_MAXUDP_BUFFSIZE UDINT @ 200
@ Param

+-10 PoOUs

+-I2) Version

E- Qutputs

VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;

sRemoteHost : T IPv4Addr := '';
nRemotePort : UDINT;

Close

nRecBytes : UDINT;

END VAR

Name Type Description

bBusy BOOL This output is active if the function block is activated. It remains active until
acknowledgement.

bError BOOL If an error should occur during the transfer of the command, then this output is
set once the bBusy output was reset.

nErrid UDINT If an bError output is set, this parameter returns the TwinCAT TCP/

IP Connection Server error number [» 101].

sRemoteHos |T_IPv4Addr |If successful, IP address (Ipv4) of the remote device whose data were received.

t

nRemotePort |[UDINT If successful, IP port number of the remote device whose data were received
(e.g. 200).

nRecBytes |UDINT Number of data bytes last successfully received.

Requirements

Development environment Target system type PLC libraries to include (cate-

gory group)
TwinCAT v3.1.0 PC, or CX (x86, X64, Arm®) Tc2_Tcplp (communication)

5.1.11 FB_SocketUdpAddMulticastAddress

FB_SocketUdpAdd™MulticastAddress
—s5rvietId bEusy —
—hSocket bError F—
—sMulkicastAddr nErrId F—
—bExecute
—tTimeouk

36 Version: 1.5.1

TF6310

BECKHOFF

PLC API

Binds the server to a multicast IP address so that multicast packages can be received. This function block
expects an already established UDP socket connection, which can be established via the function block
FB SocketUdpCreate [» 31].

Inputs
VAR_INPUT
sSrvNetId : T _AmsNetId := '';
hSocket : T HSOCKET;
sMulticastAddr : STRING(15);
bExecute : BOOL;
tTimeout : TIME := T#5s;
END VAR
Name Type Description
sSrvNetld T_AmsNetld |String containing the network address of the TwinCAT TCP/
IP Connection Server. For the local computer (default) an empty string
may be specified.
hSocket T_HSOCKE |Connection handle [» 61] of the listener socket. This handle must first be
T requested via the function block FB SocketUdpCreate [» 31].
sMulticastAddr T_IPv4Addr |Multicast IP address to which the binding should take place.
bExecute BOOL The function block is enabled by a positive edge at this input.
tTimeout TIME Maximum time allowed for the execution of the function block.
E- Qutputs
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
END VAR
Name Type Description
bBusy BOOL This output is active if the function block is activated. It remains active until
acknowledgement.
bError BOOL If an error should occur during the transfer of the command, then this
output is set once the bBusy output was reset.
nErrid UDINT If an bError output is set, this parameter returns the TwinCAT TCP/
IP Connection Server error number [»_101].

Requirements

Development environment Target system type PLC libraries to include (cate-

gory group)
Tc2_Tcplp (communication)

TwinCAT v3.1.0 PC, or CX (x86, X64, Arm®)

5.1.12 FB_SocketUdpDropMulticastAddress
FB_SocketUdpDropMulticastAddress

— =5ty ietId bEusy —

—hSocket bError F—

—sMulkicastAddr nErrId F—

—bExecute

—tTimeaouk

Removes the binding to a multicast IP address that was previously set up via the function block
FB SocketUdpAddMulticastAddress [P_36].

TF6310

Version: 1.5.1 37

PLC AP BECKHOFF

% Inputs
VAR INPUT
sSrvNetId : T AmsNetId := '';
hSocket : T HSOCKET;
sMulticastAddr : STRING(15) ;
bExecute : BOOL;
tTimeout : TIME := T#5s;
END VAR
Name Type Description
sSrvNetld T_AmsNetl |String containing the network address of the TwinCAT TCP/
d IP Connection Server. For the local computer (default) an empty string may
be specified.
hSocket T_HSOCK |Connection handle [» 61] of the listener socket. This handle must first be
ET requested via the function block FB SocketUdpCreate [»_31].

sMulticastAddr T_IPv4Add |Multicast IP address to which the binding should take place.
r

bExecute BOOL The function block is enabled by a positive edge at this input.
tTimeout TIME Maximum time allowed for the execution of the function block.
& Qutputs
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
END VAR
Name Type Description
bBusy BOOL This output is active if the function block is activated. It remains active until
acknowledgement.
bError BOOL If an error should occur during the transfer of the command, then this output
is set once the bBusy output was reset.
nErrid UDINT If an bError output is set, this parameter returns the TwinCAT TCP/
IP Connection Server error number [»_101].

Requirements

Development environment Target system type PLC libraries to include (cate-
gory group)
TwinCAT v3.1.0 PC, or CX (x86, X64, Arm®) Tc2_Teplp (communication)

5.1.13 FB_TisSocketConnect

FB_TlsSocketConnect
—hSocket bBusyr—
—sSrvMetld bErrorf—
—|sRemoteHost nErrld f—
—nRemotePort
—iflags
—bExecute
—tTimeout

The FB_TIsSocketConnect function block enables a client to establish a new TCP/IP connection to a remote
server via the TwinCAT TCP/IP Connection Server, secured via TLS. If successful, a new socket is opened,
and the associated connection handle is returned at the hSocket output. The connection handle is required
by the function blocks FB_SocketSend [P 28] and FB_SocketReceive [»_30], for example, in order to exchange
data with a remote server. If a connection is no longer required, it can be closed with the function block

FB SocketClose [P _24]. Several clients can establish a connection with the remote server at the same time.

38 Version: 1.5.1 TF6310

BECKHOFF

PLC API

For each new client, a new socket is opened and a new connection handle is returned. The TwinCAT TCP/
IP Connection Server automatically assigns a new IP port number for each client. The TLS parameters can

be defined via the function blocks FB TlsSocketAddCa [P 42], FB TlsSocketAddCrl [» 43],

FB TlsSocketSetPsk [P 45] and FB TlsSocketSetCert [P 44]. Programming samples for their use can be
found in our samples.

Inputs
VAR INPUT
sSrvNetId : T AmsNetId:='""';
sRemoteHost : STRING (TCPADS TLS_HOSTNAME SIZE):='';
nRemotePort : UDINT:=0;
flags : ST_TlsConnectFlags:=DEFAULT_ TLSCONNECTFLAGS;
bExecute : BOOL;
tTimeout : TIME:=T#45s; (*!!!*)
END VAR
Name Type Description
sSrvNetld T_AmsNetld String containing the network address of the
TwinCAT TCP/IP Connection Server. For the local
computer (default) an empty string may be specified.
sRemoteHost STRING(TCPADS_TLS_ HOS |IP address (Ipv4) of the remote server in the form of a
TNAME_SIZE) string (e.g. 172.33.5.1). An empty string can be entered
on the local computer for a server.
nRemotePort UDINT IP port number of the remote server (e.g. 200).
flags ST TIsConnectFlags [» 60] Additional (optional) client connection parameters.
bExecute BOOL The function block is enabled by a positive edge at this
input.
tTimeout TIME Maximum time allowed for the execution of the function
block.

i

Setting the maximum execution time of the function block

Do not set the value "tTimeout" too low, as timeout periods of > 30 s can occur in case of a network
interruption. If the value is too low, command execution would be interrupted prematurely, and ADS

error code 1861 (timeout elapsed) would be returned instead of the Winsocket error
WSAETIMEDOUT.

#/E- Inputs/outputs

VAR IN OUT
hSocket :
END VAR

T HSOCKET;

Name

Type

Description

hSocket

T_HSOCKET

TCP/IP connection handle [P 61] to the newly opened
local client socket

E- Qutputs

VAR OUTPUT
bBusy
bError
nErrId :

END_VAR

: BOOL;
: BOOL;
UDINT;

TF6310

Version: 1.5.1

39

PLC AP BECKHOFF

Name Type Description

bBusy BOOL This output is active if the function block is activated. It remains active
until acknowledgement.

bError BOOL If an error should occur during the transfer of the command, then this
output is set once the bBusy output was reset.

nErrid UDINT If an bError output is set, this parameter returns the TwinCAT TCP/
I[P Connection Server error number [P_101].

Requirements

Development environment Target platform PLC libraries to be integrated
(category group)

TF6310 v3.3.15.0 or later PC or CX (x86, x64, Arm®) Tc2_Tceplp (Communication)

TwinCAT v3.1.0

5.1.14 FB_TIisSocketListen

FB_TlsSocketListen
—hListener bBusyt—
—sSrvMNetld bErrorf—
—sLocalHost nErrld f—
—nLocalPort
—flags
—bExecute
—tTimeout

The function block FB_TLsSocketListen can be used to open a new listener socket secured via TLS via the
TwinCAT TCP/IP Connection Server. Via a listener socket, the TwinCAT TCP/IP Connection Server can
'listen' for incoming connection requests from remote clients. The socket handle created with the function
block FB TIsSocketCreate [P 41] can then be used by the function block FB SocketAccept [P 27] to accept an
incoming client request. If a listener socket is no longer required, it can be closed with the function block

FB SocketClose [P 24]. The listener sockets on an individual computer must have unique IP port numbers.
Programming samples for using this function block can be found in our samples.

Inputs

VAR INPUT
sSrvNetId : T AmsNetId:='';
sLocalHost : T IPv4Addr:='"';
nLocalPort : UDINT:=0;

flags : ST TlsListenFlags:=DEFAULT TLSLISTENFLAGS;
bExecute : BOOL;
tTimeout : TIME:=T#5s;
END_VAR
Name Type Description
hListener T HSOCKET Socket handle, which was created via the function block
FB_TlIsSocketCreate.
sSrvNetld T_AmsNetld String containing the network address of the TwinCAT TCP/

IP Connection Server. For the local computer (default) an empty
string may be specified.

sLocalHost |T_IPv4Addr Local server IP address (Ipv4) in the form of a string (e.g.
172.13.15.2). For a server on the local computer (default), an empty
string may be entered.

nLocalPort UDINT Local server IP port (e.g. 200).
flags ST TlsListenFlags Additional (optional) server connection settings.
[» 601
bExecute BOOL The function block is enabled by a positive edge at this input.
tTimeout TIME Maximum time allowed for the execution of the function block.

40 Version: 1.5.1 TF6310

BECKHOFF PLC API

#/E- Inputs/outputs

VAR IN OUT
hListener : T HSOCKET;

END_ VAR

Name Type Description

hListener T_HSOCKET Connection handle [» 61] to the new listener socket.

E- Qutputs

VAR_OUTPUT
bBusy : BOOL;

bError : BOOL;
nErrId : UDINT;

END VAR

Name Type Description

bBusy BOOL This output is active if the function block is activated. It remains active until
acknowledgement.

bError BOOL If an error should occur during the transfer of the command, then this output is
set once the bBusy output was reset.

nErrid UDINT If an bError output is set, this parameter returns the TwinCAT TCP/
I[P Connection Server error number [P_101].

Requirements

Development environment Target platform PLC libraries to be integrated
(category group)

TF6310 v3.3.15.0 or later PC or CX (x86, x64, Arm®) Tc2_Tcplp (Communication)

TwinCAT v3.1.0

5.1.15 FB_TisSocketCreate

FB_TlsSocketCreate
—sSrvNetld bBusy [~
—blistener bError -
—bExecute nErrldi—
—tTimeout hSocket|—

The function block FB_TlsSocketCreate can be used to create a new socket via the TwinCAT TCP/IP
Connection Server, either for a server (bListener:=true) or client application (bListener:=false). Via a listener
socket, the TwinCAT TCP/IP Connection Server can 'listen' for incoming connection requests from remote
clients. If successful, the associated connection handle (hSocket) is returned at the hListner output. This
handle is required by the function block FB TlsSocketListen [»_40], and subsequently FB SocketAccept [» 27].
If a listener socket is no longer required, it can be closed with the function block FB SocketClose [P 24]. After
the execution of the function block FB_TIsSocketCreate TLS parameters can be set to secure the
communication connection. This is done using the function blocks FB TlsSocketAddCa [P 42],

FB TIsSocketAddCrl [» 43], FB TlsSocketSetCert [» 44] and FB TlsSocketSetPsk [P 45]. Programming

samples for this can be found in our samples.

Inputs

VAR INPUT
sSrvNetId : T AmsNetId:='"';
bListener : BOOL:=FALSE;

bExecute : BOOL;
tTimeout : TIME:=T#5s;
END_ VAR

TF6310 Version: 1.5.1 41

PLC AP BECKHOFF

Name Type Description

sSrvNetld T_AmsNetld String containing the network address of the TwinCAT TCP/

IP Connection Server. For the local computer (default) an empty string
may be specified.

bListener BOOL Creates a new socket handle.
bExecute BOOL The function block is enabled by a positive edge at this input.
tTimeout TIME Maximum time allowed for the execution of the function block.
E- Qutputs
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
hSocket : T HSOCKET;
END VAR
Name Type Description
bBusy BOOL This output is active if the function block is activated. It remains active until
acknowledgement.
bError BOOL If an error should occur during the transfer of the command, then this output
is set once the bBusy output was reset.
nErrid UDINT If an bError output is set, this parameter returns the TwinCAT TCP/
IP Connection Server error number [»_101].
hSocket |T_HSOCKET Connection handle [61] for the new socket.

Requirements

Development environment Target platform PLC libraries to be integrated
(category group)

TF6310 v3.3.15.0 or later PC or CX (x86, x64, Arm®) Tc2_Tceplp (Communication)

TwinCAT v3.1.0

5.1.16 FB_TIsSocketAddCa

FB_TlsSocketAddCa
—{s5rvMetld bBusyt—
—hSocket bErrarf—
—sCaFath nErrld b—
— bExecute
—tTimeout

The FB_TIsSocketAddCa function block is used to configure the path to a CA certificate for an existing
socket handle. The certificate file must be in PEM format. Programming samples for using this function block
can be found in our samples.

Inputs
VAR INPUT
sSrvNetId : T AmsNetId:='"';
hSocket : T HSOCKET;
sCaPath : STRING(TCPADSiTL87CERTIFICATEiPATHisIZE):=";
bExecute : BOOL;
tTimeout : TIME:=T#5s;
END_ VAR

42 Version: 1.5.1 TF6310

BECKHOFF PLC API

Name Type Description

sSrvNetld T_AmsNetld String containing the network address of the TwinCAT TCP/
IP Connection Server. For the local computer (default) an
empty string may be specified.

hSocket T HSOCKET Socket handle.

sCaPath STRING(TCPADS_TLS_CERTI|Path to the CA's certificate file.

FICATE_PATH_SIZE)

bExecute BOOL The function block is enabled by a positive edge at this
input.

tTimeout TIME Maximum time allowed for the execution of the function
block.

E- Qutputs

VAR OUTPUT

bBusy : BOOL;

bError : BOOL;
nErrId : UDINT;

END_VAR

Name Type Description

bBusy BOOL This output is active if the function block is activated. It remains active until
acknowledgement.

bError BOOL If an error should occur during the transfer of the command, then this output is
set once the bBusy output was reset.

nErrid UDINT If an bError output is set, this parameter returns the TwinCAT TCP/
I[P Connection Server error number [P_101].

Requirements

Development environment Target platform PLC libraries to be integrated
(category group)

TF6310 v3.3.15.0 or later PC or CX (x86, x64, Arm®) Tc2_Tcplp (Communication)

TwinCAT v3.1.0

5.1.17 FB_TisSocketAddCrl

FB_TlsSocketAddCrl
—s5rvMetld bBusyp—
—hSocket bErrorf—
—sCrlPath nErrld f—
—bExecute
—{tTimeout

The function block FB_TIsSocketAddCrl is used to specify the path to a CRL file for an existing socket
handle. The CRL must be in PEM format. Programming samples for using this function block can be found in
our samples.

Inputs
VAR INPUT
sSrvNetId : T_AmsNetId:='"';
hSocket : T HSOCKET;
sCrlPath : STRING(TCPADS TLS CERTIFICATE PATH SIZE):='';
bExecute : BOOL;
tTimeout : TIME:=T#5s;
END_VAR

TF6310 Version: 1.5.1 43

PLC API BECKHOFF
Name Type Description
sSrvNetld T_AmsNetld String containing the network address of the TwinCAT TCP/
IP Connection Server. For the local computer (default) an
empty string may be specified.
hSocket T_HSOCKET Socket handle.
sCrlPath STRING(TCPADS_TLS CER |Path to the CRL file.
TIFICATE_PATH_SIZE)
bExecute BOOL The function block is enabled by a positive edge at this input.
tTimeout TIME Maximum time allowed for the execution of the function block.
& Qutputs
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
END VAR
Name Type Description
bBusy BOOL This output is active if the function block is activated. It remains active until
acknowledgement.
bError BOOL If an error should occur during the transfer of the command, then this output is
set once the bBusy output was reset.
nErrid UDINT If an bError output is set, this parameter returns the TwinCAT TCP/
I[P Connection Server error number [P_101].
Requirements
Development environment Target platform PLC libraries to be integrated
(category group)
TF6310 v3.3.15.0 or later PC or CX (x86, x64, Arm®) Tc2_Tceplp (Communication)

TwinCAT v3.1.0

5.1.18

FB_TisSocketSetCert

—=Srvhetld
— hSocket
—=CertPath
—=KeyPath
—{sKeyPwd
— bExecute
—tTimeout

FB_Tls5ocketSetCert
bBusyp—
bErrorf—
nErrld —

The function block FB_TlsSocketSetCert can be used to configure a client/server certificate that is to be
used for a specific socket handle. The certificates must be in PEM format. Programming samples for using
this function block can be found in our samples.

Inputs

VAR INPUT
sSrvNetId : T AmsNetId:='"';
hSocket : T _HSOCKET;
sCertPath : STRING(TCPADS TLS CERTIFICATE PATH SIZE):='"';
sKeyPath : STRING(TCPADS TLS CERTIFICATE PATH SIZE):=''
sKeyPwd : STRING (TCPADS_TLS_KEY PASSWORD_SIZE) :='";
bExecute : BOOL;
tTimeout : TIME:=T#5s;

END VAR

44

Version: 1.5.1 TF6310

BECKHOFF PLC API
Name Type Description
sSrvNetld T_AmsNetld String containing the network address of the
TwinCAT TCP/IP Connection Server. For the local
computer (default) an empty string may be specified.
hSocket T HSOCKET Socket handle.
sCertPath STRING(TCPADS_TLS_CERTIFI |Path to the file with the client/server certificate.
CATE_PATH_SIZE)
sKeyPath STRING(TCPADS_TLS_CERTIFI |Path to the file with the client/server private key.
CATE_PATH_SIZE)
sKeyPwd STRING(TCPADS_TLS KEY_PA |Optional, if the private key is secured with a password.
SSWORD_SIZE)
bExecute BOOL The function block is enabled by a positive edge at this
input.
tTimeout TIME Maximum time allowed for the execution of the function
block.
E- Qutputs
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
END VAR
Name Type Description
bBusy BOOL This output is active if the function block is activated. It remains active until
acknowledgement.
bError BOOL If an error should occur during the transfer of the command, then this output is
set once the bBusy output was reset.
nErrid UDINT If an bError output is set, this parameter returns the TwinCAT TCP/
IP Connection Server error number [P_101].

Requirements

Development environment

Target platform

PLC libraries to be integrated
(category group)

TwinCAT v3.1

TF6310 v3.3.15.0 or later
.0

PC or CX (x86, x64, Arm®)

Tc2_Tceplp (Communication)

5.1.19

FB_TisSocketSetPsk

—s5rvMetld
— hSocket
—sIdentity
—pskkey
—IpskKeylLen
— bExecute
—tTimeout

FB_TlsSocketSetPsk

bBusy

bErrorf—

nErrld

The function block FB_TIsSocketSetPsk can be used to configure a pre-shared secret for an existing socket
handle. Programming samples for using this function block can be found in our samples.

Inputs
VAR INPUT

sSrvNetId :

hSocket

sIdentity :

pskKey

T_AmsNetId:='"';
: T HSOCKET;

: PVOID:=0;

STRING (TCPADS TLS PSK IDENTITY SIZE):='';

TF6310

Version: 1.5.1

45

PLC AP BECKHOFF

pskKeyLen : UDINT (0..TCPADS TLS MAX PSK KEY SIZE):=0;

bExecute : BOOL;
tTimeout : TIME:=T#5s;
END VAR
Name Type Description
sSrvNetld T_AmsNetld String containing the network address of the
TwinCAT TCP/IP Connection Server. For the local
computer (default) an empty string may be specified.
hSocket T HSOCKET Socket handle.
sldentity STRING(TCPADS_TLS PSK_IDENTI |A freely selectable identity for the PSK.
TY_SIZE)
pskKey PVOID Pointer to a byte array containing the PSK.
pskKeyLen UDINT(0..TCPADS_TLS MAX PSK_K|Length of pskKey.
EY_SIZE)
bExecute BOOL The function block is enabled by a positive edge at
this input.
tTimeout TIME Maximum time allowed for the execution of the
function block.
E- Qutputs
VAR OUTPUT
bBusy : BOOL;

bError : BOOL;
nErrId : UDINT;

END_VAR

Name Type Description

bBusy BOOL This output is active if the function block is activated. It remains active until
acknowledgement.

bError BOOL If an error should occur during the transfer of the command, then this output is
set once the bBusy output was reset.

nErrid UDINT If an bError output is set, this parameter returns the TwinCAT TCP/
IP Connection Server error number [»_101].

Requirements

Development environment Target platform PLC libraries to be integrated
(category group)

TF6310 v3.3.15.0 or later PC or CX (x86, x64, Arm®) Tc2_Tcplp (Communication)

TwinCAT v3.1.0

5.1.20 Helper

5.1.20.1 FB_ClientServerConnection
FB_ClientServerConnection

— sSreMetID bBusy—
—nMode bErrorg—
—sRemoteHost nErrld f—
—nRemotePart hSockett—
— bEnable gstate —
—tReconnect

The function block FB_ClientServerConnection can be used to manage (establish or remove) a client
connection. FB_ClientServerConnection simplifies the implementation of a client application by

encapsulating the functionality of the two function blocks FB SocketConnect [P 23] and FB SocketClose [P 24]

46 Version: 1.5.1 TF6310

BECKHOFF PLC API

internally. The integrated debugging output of the connection status facilitates troubleshooting in the event of
configuration or communication errors. In addition, a minimum client application only requires an instance of

the function block FB SocketSend [»_28] and/or an instance of the function block FB SocketReceive [»_30].

In the first step, a typical client application establishes the connection with the server via the
FB_ClientServerConnection function block. In the next step instances of FB_SocketSend and/or
FB_SocketReceive can be used to exchange data with the server. When a connection is closed depends on
the requirements of the application.

! Inputs

VAR _INPUT
sSrvNetID : T_AmsNetID := ''
nMode : DWORD := 0;

sRemoteHost : T IPv4Addr :
nRemotePort : UDINT;

bEnable : BOOL;

tReconnect : TIME := T#45s; (*!!!%*)
END VAR
Name Type Description
sSrvNetID T_AmsNetl | String containing the AMS network address of the TwinCAT TCP/

D IP Connection Server. For the local computer (default) an empty string may be
specified.

nMode DWORD |Parameter flags (modes). The permissible parameters are listed here and can

be combined by ORing:
CONNECT_MODE_ENABLEDBG:

Enables logging of debug messages in the application log. In order to view the
debug messages open the TwinCAT System Manager and activate log view.

sRemoteHost | T_IPv4Add |IP address (Ipv4) of the remote server in the form of a string (e.g. '172.33.5.1").

r An empty string can be entered on the local computer for a server.
nRemotePort |UDINT IP port number of the remote server (e.g. 200).
bEnable BOOL As long as this input is TRUE, the system attempts to establish a new

connection at regular intervals until a connection was established successfully.
Once established, a connection can be closed again with FALSE.

tReconnect |TIME Cycle time used by the function block to try and establish the connection.

@® Setting the cycle time for the connection

1 The tReconnect value should not be set too low, since timeout periods of > 30 s may occur in the
event of a network interruption. If the value is too low, command execution would be interrupted
prematurely, and ADS error code 1861 (timeout elapsed) would be returned instead of the
Winsocket error WSAETIMEDOUT.

E- Qutputs
VAR OUTPUT

bBusy : BOOL;

bError : BOOL;

nErrId : UDINT;

hSocket : T HSOCKET;

eState : E SocketConnectionState := eSOCKET DISCONNECTED;
END_ VAR

TF6310 Version: 1.5.1 47

PLC AP BECKHOFF

Name Type Description

bBusy BOOL TRUE, as long as the function block is active.

bError BOOL Becomes TRUE if an error code occurs.

nErriD UDINT If an bError output is set, this parameter returns the TwinCAT TCP/
IP_Connection Server error number [»_101].

hSocket T_HSOCKET Connection handle [» 61] to the newly opened local client socket. If

successful, this variable is transferred to the instances of the function
blocks FB SocketSend [P 28] and/or FB SocketReceive [P 30].

eState E_SocketConnectionSt |Returns the current connection status [» 57].
ate

Sample of a call in FBD
PROGRAM MAIN

VAR
fbClientConnectionl : FB ClientServerConnection;
bConnectl : BOOL;
bBusyl : BOOL;
bErrorl : BOOL;
nErrID1 : UDINT;
hSocketl : T HSOCKET;
eStatel : E SocketConnectionState;
END_VAR
fhClientConnectionl
FB_ClientServerConnection
"z etlD bBusy bBusy1
COMNECT MODE EMNABLEDEG=15#80000000-nMode bErrar—bError
17216 6. 195" qs5RemoteHost nErrldF—nErlD1=16800000000
2404qnRemotePort hSocket—hSocket
bConnect!—<bEnable eState—eState1=eSOCKET COMNECTED
TH#dEs—tReconnect

Here you can find more application examples (and source code): Samples [P _64]

Requirements

Development environment Target system type PLC libraries to include (cate-
gory group)
TwinCAT v3.1.0 PC, or CX (x86, X64, Arm®) Tc2_Tcplp (communication)
5.1.20.2 FB_ServerClientConnection
FB_ServerClientConnection
— hServer bBusy—
—{eMode bErrork—
—sRemoteHost nErrlD F—
—nRemotePort hsocketk—
—bEnable eState f—
—tReconnect

The function block FB_ServerClientConnection can be used to manage (establish or remove) a server
connection. FB_ServerClientConnection simplifies the implementation of a server application by
encapsulating the functionality of the three function blocks FB SocketListen [P 26], FB SocketAccept [P 27]
and FB SocketClose [P 24] internally. The integrated debugging output of the connection status facilitates
troubleshooting in the event of configuration or communication errors. In addition, a minimum server
application only requires an instance of the function block FB_SocketSend [P 28] and/or an instance of the
function block FB_SocketReceive [P 30].

48 Version: 1.5.1 TF6310

BECKHOFF PLC API

In the first step a typical server application establishes the connection with the client via the
FB_ServerClientConnection function block (more precisely, the server application accepts the incoming
connection request). In the next step instances of FB_SocketSend and/or FB_SocketReceive can be used to
exchange data with the server. When a connection is closed depends on the requirements of the application.

#* Inputs
VAR INPUT
eMode : E SocketAcceptMode := eACCEPT ALL;
sRemoteHost : T IPv4Addr := '';
nRemotePort : UDINT := 0;
bEnable : BOOL;
tReconnect : TIME := T#ls;
END_ VAR
Name [Type Description
eMode |E_SocketAcceptM Defines whether all or only certain connections [P 56] are to be accepted.
ode
sRemot |T_IPv4Addr IP address (Ipv4) in string form (e.g. '172.33.5.1") of the remote client whose
eHost connection is to be accepted. For a client on the local computer an empty
string may be specified.
nRemot [UDINT IP port number (e.g. 200) of the remote client whose connection is to be
ePort accepted.
bEnable | BOOL As long as this input is TRUE, the system attempts to establish a new
connection at regular intervals until a connection was established successfully.
Once established, a connection can be closed again with FALSE.
tReconn |TIME Cycle time used by the function block to try to establish a connection.
ect

B~ Inputs/outputs

VAR IN OUT

hServer : T HSERVER;
END_ VAR
Name Type Description

hServer |hServer |Server handle [» 61]. This input variable has to be initialized via the
F CreateServerHnd [P 53] function.

& Qutputs
VARﬁOUTPUT
bBusy : BOOL;
bError : BOOL;
nErrID : UDINT;
hSocket : T HSOCKET;
eState : E _SocketConnectionState := eSOCKET DISCONNECTED;
END_ VAR
Name [Type Description
bBusy |BOOL TRUE, as long as the function block is active.
bError |BOOL Becomes TRUE if an error code occurs.
nErrld |UDINT If an bError output is set, this parameter returns the TwinCAT TCP/
I[P Connection Server error number [P_101].
hSocket |'T_HSOCKET Connection handle [61] to the newly opened remote client socket. If
successful, this variable is transferred to the instances of the function
blocks FB SocketSend [P 28] and/or FB SocketReceive [P 30].
eState |E_SocketConnectionSt |Returns the current connection status [P 57].
ate

TF6310 Version: 1.5.1 49

PLC AP BECKHOFF

Sample in FBD

The following sample illustrates initialization of a server handle variable. The server handle is then
transferred to three instances of the FB_ServerClientConnection function block.

PROGRAM MAIN

VAR

hServer
bListen

fbServerConnectionl

T HSERVER;
BOOL;

FB ServerClientConnection;

bConnectl BOOL;

bBusyl BOOL;

bErrorl BOOL;

nErrID1 UDINT;

hSocketl T HSOCKET;

eStatel E SocketConnectionState;

fbServerConnection?
bConnect2

FB ServerClientConnection;
BOOL;

bBusy?2 BOOL;

bError2 BOOL;

nErrID2 UDINT;

hSocket2 T_HSOCKET;

eState2 E SocketConnectionState;

fbServerConnection3
bConnect3

FB ServerClientConnection;
BOOL;

bBusy3 BOOL;

bError3 BOOL;

nErrID3 UDINT;

hSocket3 T_HSOCKET;

eState3 E SocketConnectionState;
END VAR
Online View:

50

Version: 1.5.1

TF6310

BECKHOFF PLC API

F_CreateServerHnd
=SrMetlD
"—sLocalHost
2ald—nLocalPort
LISTEN_MODE_CLOSEALL OR COMMECT_MODE_EMABLEDEG—nhode
bListen—bEnable
hSererqhSerer &

thSemerConnection

FB_ServerClientConnection
eACCERT _ALLqeMode bBusy hBusy1
"—sRemoteHost bError—bError
OI—nRemotePort hE D F—nErlD1=16&010000000
hCannect!qhEnable hSocket—hSocketl
T#! s—tReconnect eState—eState1=e30CEET_ZSUSPENDED
hSemwerqhServer &

thSemerConnection?

FB_ServerClientConnection
eACCEPT_SEL_HOST-{eMode bBusy hBusy? i
1727 2194 9sRemoteHost bError—bError2
OI—nRemotePort hE D F—nErlDZ2="16&10000000
bCannect2—bEnable hSocketr—hZ=ocket
T#1=—tReconnect eState—eStatel=eS0CKET _DISCOMMECTED
hSemwerqhServer &

thSemerConnection3

FB_ServerClientConnection
eACCERT _SEL_HOSTHeMode bBusy hBusy3
172166195 9sRemoteHost bError—bErrord
OI—nRemotePort hE D F—nErlDE="16&10000000
bCannect3qbEnable hSocketr—h=ockets
T#1s—qtReconnect eStater—eStated=eS0OCKET_CONMECTED
hSemwerqhServer &

The first connection is activated (bConnect1l = TRUE), but the connection has not yet been established
(passive open).

The second connection has not yet been activated (bConnect2 = FALSE) (closed).

The third connection has been activated (bConnect3 = TRUE) and a connection to the remote client has
been established.

Here you can find more application examples (and source code): Samples [P 64]

Requirements

Development environment Target system type PLC libraries to include (cate-
gory group)
TwinCAT v3.1.0 PC, or CX (x86, X64, Arm®) Tc2_Tcplp (communication)
5.1.20.3 FB_ConnectionlessSocket
FB_ConnectionlessSocket
— sSrvMetID bBusyF—
—nMode bErrorf—
—sLocalHost nErriD f—
—nLocalPort hSocketf—
—bEnable estatef—
—tReconnect

TF6310 Version: 1.5.1

PLC AP BECKHOFF

A UDP socket can be managed (opened/generated and closed) with the function block
FB_ConnectionlessSocket. FB_ConnectionlessSocket simplifies the implementation of a UDP application by

encapsulating the functionality of the two function blocks FB SocketUdpCreate [P 31] and FB _SocketClose

[»_24] already internally. The integrated debugging output of the socket status facilitates troubleshooting in
the event of configuration or communication errors. In addition, a minimum UDP application only requires an

instance of the function block SocketUdpSendTod [P 32] and/or an instance of the function block
FB SocketUdpReceiveFrom [P 34].

In the first step a typical UDP application opens a connection-less UDP socket with the function block
FB_ConnectionlessSocket. In the next step instances of FB_SocketUdpSendTo and/or
FB_SocketUdpReceiveFrom can be used for exchanging data with another communication device. When a
UDP socket is closed depends on the requirements of the application (e.g. in the event of a communication
error).

! Inputs
VAR INPUT
sSrvNetID : T_AmsNetID := ''
nMode : DWORD := 0;
sLocalHost : T Ipv4Addr := '';
nLocalPort : UDINT;
bEnable : BOOL;
tReconnect : TIME := T#45s; (*!!!¥*)
END VAR
Name Type Description
sSrvNetID | T_AmsNetl |String containing the AMS network address of the TwinCAT TCP/
D IP Connection Server. For the local computer (default) an empty string may be
specified.
nMode DWORD |Parameter flags (modes). The permissible parameters are listed here and can be

combined by ORing.
CONNECT_MODE_ENABLEDBG:

Enables logging of debug messages in the application log. In order to view the
debug messages open the TwinCAT System Manager and activate log view.

sLocalHost |T_Ipv4Add |IP address (Ipv4) in string form (e.g. '172.33.5.1") of the local network adapter. An
r empty string may be specified for the default network adapter.

nLocalPort |UDINT IP port number (e.g. 200) on the local computer.

bEnable BOOL As long as this input is TRUE, attempts are made cyclically to open a UDP socket
until a connection has been established. An open UDP socket can be closed
again with FALSE.

tReconnect |TIME Cycle time with which the function block tries to open the UDP socket.

@® Setting the cycle time for the connection

1 The tReconnect value should not be set too low, since timeout periods of > 30 s may occur in the
event of a network interruption. If the value is too low, command execution would be interrupted
prematurely, and ADS error code 1861 (timeout elapsed) would be returned instead of the
Winsocket error WSAETIMEDOUT.

& QOutputs
VAR OUTPUT

bBusy : BOOL;

bError : BOOL;

nErrId : UDINT;

hSocket : T_HSOCKET;

eState : E SocketConnectionlessState := eSOCKET CLOSED;
END_VAR

52 Version: 1.5.1 TF6310

BECKHOFF PLC API

Name Type Description

bBusy BOOL TRUE, as long as the function block is active.

bError BOOL Becomes TRUE if an error code occurs.

nErriD UDINT If an bError output is set, this parameter returns the TwinCAT TCP/
IP Connection Server error number [»_101].

hSocket T_HSOCKET Connection handle [» 61] to the newly opened UDP socket. If

successful, this variable is transferred to the instances of the
function blocks FB SocketUdpSendTo [P _32] and/or
FB SocketUdpReceiveFrom [P 34].

eState E_SocketConnectionlessS|Returns the current connection status [P 57].
tate

Requirements

Development environment Target system type PLC libraries to include (cate-
gory group)
TwinCAT v3.1.0 PC, or CX (x86, X64, Arm®) Tc2_Tcplp (communication)

5.2 Functions

5.21 F_CreateServerHnd

F_CreateServerHnd
—s5rviNetID F_CreateServerHndf—
—sLocalHost
—nLacalPart
—nMode
— bEnable
— hServer

The function F_CreateServerHnd is used to initialize/set the internal parameters of a server handle variable
hServer. The server handle is then transferred to the instances of the function block

FB ServerClientConnection [P 48] via VAR _IN_OUT. An instance of the FB_ServerClientConnection function
block can be used to manage (establish or remove) a sever connection in a straightforward manner. The
same server handle can be transferred to several instances of the function block
FB_ServerClientConnection, in order to enable the server to establish several concurrent connections.

Syntax

FUNCTION F CreateServerHnd : BOOL

VAR _IN_OUT
hServer : T_HSERVER;

END VAR

VAR _INPUT
sSrvNetID : T _AmsNetID := '';
sLocalHost : STRING(15) := '';
nLocalPort : UDINT := 0;
nMode : DWORD := LISTEN MODE CLOSEALL (* OR CONNECT MODE ENABLEDBGY*) ;

bEnable : BOOL := TRUE;

END VAR

E- Return value

Name Type Description

F_CreateServerHnd BOOL Returns TRUE if everything is OK, FALSE if there is an incorrect
parameter value.

TF6310 Version: 1.5.1 53

PLC AP BECKHOFF

% Inputs

Name Type Description

sSrvNetID |T_AmsNetID |String containing the AMS network address of the TwinCAT TCP/

IP Connection Server. For the local computer (default) an empty string may be
specified.

sLocalHost |T_IPv4Addr |Local server IP address (Ipv4) in the form of a string (e.g. '172.13.15.2"). For a
server on the local computer (default), an empty string may be entered.
nLocalPort |UDINT Local server IP port (e.g. 200).

nMode DWORD Parameter flags (modes). The permissible parameters are listed here and can be
combined by ORing.

LISTEN_MODE_CLOSEALL:

All previously opened socket connections are closed (default).
CONNECT_MODE_ENABLEDBG:

Enables logging of debug messages in the application log. In order to view the
debug messages open the TwinCAT System Manager and activate log view.

bEnable BOOL This input determines the behavior of the listener socket. A listener socket
opened beforehand remains open as long as this input is TRUE. If this input is
FALSE, the listener socket is closed automatically, but only once the last
(previously) accepted connection was also closed.

#1 | &~ |nputs/outputs

Name Type Description

hServer T _HSERVER Server handle variable whose internal parameters are to be
initialized.

Example:

See FB ServerClientConnection [» 48].

Requirements

Development environment Target system type PLC libraries to include (cate-
gory group)
TwinCAT v3.1.0 PC, or CX (x86, X64, Arm®) Tc2_Tcplp (communication)

5.2.2 HSOCKET_TO_STRING

HSOCKET_TO_STRING
—hSocket HSOCKET_TO_STRING I—

The function converts the connection handle of type T_HSOCKET to a string (e.g. for debug outputs).

The returned string has the following format: "Handle:0xA[BCD] Local:a[aa].b[bb].c[cc].d[dd]:port
Remote:a[aa].b[bb].c[cc].d[dd]:port".

Example: "Handle:0x4001 Local:172.16.6.195:28459 Remote:172.16.6.180:2404"

Syntax
FUNCTION HSOCKET TO STRING : STRING
VAR _INPUT
hSocket : T_HSOCKET;
END VAR

54 Version: 1.5.1 TF6310

BECKHOFF

PLC API

E- Return value

Name Type Description

HSOCKET |STRING Contains the STRING representation of the connection handle.
_TO_STRI

NG

Inputs

Name Type Description

hSocket |T_HSOCKET

The connection handle [P _61] to be converted.

Requirements

Development environment Target system type PLC libraries to include (cate-
gory group)
TwinCAT v3.1.0 PC, or CX (x86, X64, Arm®) Tc2_Tcplp (communication)

5.2.3 HSOCKET_TO_STRINGEX
HSOCKET_TO_STRINGEX

—{hSocket HSOCKET_TO_STRINGEXF—

—bLocal

—bRemote

The function converts the connection handle of type T_HSOCKET to a string (e.g. for debug outputs).

The returned string has the following format: "Handle:0xA[BCD] Local:a[aa].b[bb].c[cc].d[dd]:port
Remote:a[aa].b[bb].c[cc].d[dd]:port".

Example: "Handle:0x4001 Local:172.16.6.195:28459 Remote:172.16.6.180:2404"

The parameters bLocal and bRemote determine whether the local and/or remote address information should
be included in the returned string.

Syntax

FUNCTION HSOCKET TO STRINGEX : STRING

VAR INPUT

“hSocket :

bLocal

bRemote :

END VAR

: BOOL;
BOOL;

E- Return value

T HSOCKET;

Name Type Description

HSOCKET _TO_ST |STRING Contains the hex-based STRING representation of the connection
RINGEX handle.

#! Inputs

Name Type Description

hSocket |'T_HSOCKET |The connection handle [» 61] to be converted.

bLocal BOOL TRUE: Include the local address, FALSE: Exclude the local address.

bRemote |BOOL TRUE: Include the remote address, FALSE: Exclude the remote address.

TF6310

Version: 1.5.1 55

PLC AP BECKHOFF

Requirements

Development environment Target system type PLC libraries to include (cate-
gory group)
TwinCAT v3.1.0 PC, or CX (x86, X64, Arm®) Tc2_Teplp (communication)

5.2.4 SOCKETADDR_TO_STRING

SOCKETADDR_TO_STRING
—stSockaddr SOCKETADDR_TO_STRING —

The function converts a variable of type ST_SockAddr to a string (e.g. for debug outputs).
The returned string has the following format: "a[aa].b[bb].c[cc].d[dd]:port"

Example: "172.16.6.195:80"

FUNCTION SOCKETADDR TO_ STRING : STRING
VAR INPUT

stSockAddr : ST SockAddr;
END_ VAR

E- Return value

Name Type Description

SOCKETADDR_TO |STRING Contains the STRING representation of the socket address.
_STRING

Inputs

Name Type Description

stSockeAddr ST _SockAddr The variable to be converted.

See ST SockAddr [» 59]

Requirements

Development environment Target system type PLC libraries to include (cate-
gory group)
TwinCAT v3.1.0 PC, or CX (x86, X64, Arm®) Tc2_Tcplp (communication)

5.3 Data types

5.31 E_SocketAcceptMode

E_SocketAcceptMode specifies which connections are accepted by the server.

Syntax

TYPE E SocketAcceptMode:
(* Connection accept modes *)
(
eACCEPT ALL, (* Accept connection to all remote clients *)
eACCEPT_ SEL HOST, (* Accept connection to selected host address ¥*)
eACCEPT SEL PORT, (* Accept connection to selected port address *)
eACCEPT SEL HOST_PORT (* Accept connection to selected host and port address *)
)i
END TYPE

56 Version: 1.5.1 TF6310

BECKHOFF PLC AP

Values

Name Description

eACCEPT_ALL Accept connection to all remote clients.
eACCEPT_SEL_HOST Accept connection to selected host address.
eACCEPT_SEL_PORT Accept connection to selected port address.
eACCEPT_SEL HOST_PORT Accept connection to selected host and port address.

Requirements

Development environment Target system type PLC libraries to include (cate-
gory group)

TwinCAT v3.1.0 PC, or CX (x86, X64, Arm®) Tc2_Tceplp (communication)

5.3.2 E_SocketConnectionState

TCP/IP Socket Connection Status (eSOCKET_SUSPENDED == the status changes e.g. from
eSOCKET_CONNECTED => eSOCKET_DISCONNECTED).

Syntax

TYPE E SocketConnectionState:

(
eSOCKET DISCONNECTED,
eSOCKET CONNECTED,
e€SOCKET SUSPENDED

)

END_TYPE

Values

Name Description

eSOCKET_DISCONNECTED The connection is interrupted.

eSOCKET_CONNECTED The connection exists.

eSOCKET_SUSPENDED The status of the connection changes from disconnected to connected
or from connected to disconnected.

Requirements

Development environment Target system type PLC libraries to include (cate-
gory group)

TwinCAT v3.1.0 PC, or CX (x86, X64, Arm®) Tc2_Tcplp (communication)

5.3.3 E_SocketConnectionlessState

Status information of a connection-less UDP socket (eSOCKET_TRANSIENT == the status changes from
eSOCKET_CREATED=>eSOCKET_CLOSED, for example).

Syntax

TYPE E_SocketConnectionlessState:
(
eSOCKET_CLOSED,
e€SOCKET_CREATED,
e€SOCKET TRANSIENT
);
END TYPE

TF6310 Version: 1.5.1 57

PLC AP BECKHOFF

Values

Name Description

eSOCKET_CLOSED The UDP socket is closed.

eSOCKET_CREATED The UDP socket is created.

eSOCKET_TRANSIENT The UDP socket changes from closed to open or from open to closed.

Requirements

Development environment Target system type PLC libraries to include (cate-
gory group)
TwinCAT v3.1.0 PC, or CX (x86, X64, Arm®) Tc2_Tcplp (communication)

5.3.4 E_WinsockError

Syntax
TYPE E WinsockError
(

WSOK,
WSAEINTR := 10004 ,

(* A blocking operation was interrupted by a call to WSACancelBlockingCall. *)
WSAEBADF := 10009 , (* The file handle supplied is not wvalid. *)
WSAEACCES := 10013 ,

(* An attempt was made to access a socket in a way forbidden by its access permissions. *)
WSAEFAULT := 10014 ,

(* The system detected an invalid pointer address in attempting to use a pointer argument in a call.
*)

WSAEINVAL := 10022 , (* An invalid argument was supplied. *)
WSAEMFILE := 10024 , (* Too many open sockets. *)
WSAEWOULDBLOCK := 10035 , (* A non-
blocking socket operation could not be completed immediately. *)
WSAEINPROGRESS := 10036 , (* A blocking operation is currently executing. *)
WSAEALREADY := 10037 , (* An operation was attempted on a non-
blocking socket that already had an operation in progress. ¥*)
WSAENOTSOCK := 10038 , (* An operation was attempted on something that is not a socket. *)
WSAEDESTADDRREQ := 10039 ,
(* A required address was omitted from an operation on a socket. *)
WSAEMSGSIZE := 10040 ,

(* A message sent on a datagram socket was larger than the internal message buffer or some other net
work limit, or the buffer used to receive a datagram into was smaller than the datagram itself. *)
WSAEPROTOTYPE := 10041 ,
(* A protocol was specified in the socket function call that does not support the semantics of the s
ocket type requested. *)
WSAENOPROTOOPT := 10042 ,
(* An unknown, invalid, or unsupported option or level was specified in a getsockopt or setsockopt c
all. *)
WSAEPROTONOSUPPORT := 10043 ,
(* The requested protocol has not been configured into the system, or no implementation for it exist
s. %)

WSAESOCKTNOSUPPORT := 10044 ,

(* The support for the specified socket type does not exist in this address family. *)
WSAEOPNOTSUPP := 10045 ,

(* The attempted operation is not supported for the type of object referenced. *)
WSAEPFNOSUPPORT := 10046 ,

(* The protocol family has not been configured into the system or no implementation for it exists. *

WSAEAFNOSUPPORT := 10047 ,
(* An address incompatible with the requested protocol was used. ¥*)
WSAEADDRINUSE := 10048 , (* Only one usage of each socket address (protocol/network address/
port) is normally permitted. *)
WSAEADDRNOTAVAIL := 10049 , (* The requested address is not valid in its context. *)
WSAENETDOWN := 10050 , (* A socket operation encountered a dead network. *)
WSAENETUNREACH := 10051 , (* A socket operation was attempted to an unreachable network. *)
WSAENETRESET := 10052 , (* The connection has been broken due to keep-
alive activity detecting a failure while the operation was in progress. *)
WSAECONNABORTED := 10053 ,
(* An established connection was aborted by the software in your host machine. ¥*)
WSAECONNRESET := 10054 , (* An existing connection was forcibly closed by the remote host. *)
WSAENOBUFS := 10055 ,

(* An operation on a socket could not be performed because the system lacked sufficient buffer space
or because a queue was full. *)
WSAEISCONN := 10056 , (* A connect request was made on an already connected socket. *)

58 Version: 1.5.1 TF6310

BECKHOFF PLC API

WSAENOTCONN := 10057 ,
(* A request to send or receive data was disallowed because the socket is not connected and (when se
nding on a datagram socket using a sendto call) no address was supplied. *)

WSAESHUTDOWN := 10058 ,
(* A request to send or receive data was disallowed because the socket had already been shut down in
that direction with a previous shutdown call. ¥*)

WSAETOOMANYREFS := 10059 , (* Too many references to some kernel object. *)

WSAETIMEDOUT := 10060 ,

(* A connection attempt failed because the connected party did not properly respond after a period o
f time, or established connection failed because connected host has failed to respond. ¥*)

WSAECONNREFUSED := 10061 ,
(* No connection could be made because the target machine actively refused it. *)
WSAELOOP := 10062 , (* Cannot translate name. *)
WSAENAMETOOLONG := 10063 , (* Name component or name was too long. *)
WSAEHOSTDOWN := 10064 ,
(* A socket operation failed because the destination host was down. *)
WSAEHOSTUNREACH := 10065 , (* A socket operation was attempted to an unreachable host. *)
WSAENOTEMPTY := 10066 , (* Cannot remove a directory that is not empty. *)
WSAEPROCLIM := 10067 ,

(* A Windows Sockets implementation may have a limit on the number of applications that may use it s
imultaneously. *)

WSAEUSERS := 10068 , (* Ran out of quota. *)

WSAEDQUOT := 10069 , (* Ran out of disk quota. *)

WSAESTALE := 10070 , (* File handle reference is no longer available. *)
WSAEREMOTE := 10071 , (* Item is not available locally. *)
WSASYSNOTREADY := 10091 ,

(* WSAStartup cannot function at this time because the underlying system it uses to provide network
services 1is currently unavailable. *)

WSAVERNOTSUPPORTED := 10092 , (* The Windows Sockets version requested is not supported. *)
WSANOTINITIALISED := 10093 ,

(* Either the application has not called WSAStartup, or WSAStartup failed. *)
WSAEDISCON := 10101 ,

(* Returned by WSARecv or WSARecvFrom to indicate the remote party has initiated a graceful shutdown
sequence. *)
WSAENOMORE := 10102 , (* No more results can be returned by WSALookupServiceNext. ¥*)
WSAECANCELLED := 10103 ,
(* A call to WSALookupServiceEnd was made while this call was still processing. The call has been ca
nceled. *)
WSAEINVALIDPROCTABLE := 10104 , (* The procedure call table is invalid. *)
WSAEINVALIDPROVIDER := 10105 , (* The requested service provider is invalid. *)
WSAEPROVIDERFAILEDINIT := 10106 ,
(* The requested service provider could not be loaded or initialized. *)
WSASYSCALLFAILURE := 10107 , (* A system call that should never fail has failed. ¥*)
WSASERVICE NOT FOUND := 10108 ,
(* No such service is known. The service cannot be found in the specified name space. *)
WSATYPE NOT FOUND := 10109 , (* The specified class was not found. *)
WSA_E_NO_MORE := 10110 , (* No more results can be returned by WSALookupServiceNext. *)
WSA_E_CANCELLED 5= 10111 ,
(* A call to WSALookupServiceEnd was made while this call was still processing. The call has been ca
nceled. *)

WSAEREFUSED := 10112 , (* A database query failed because it was actively refused. ¥*)
WSAHOST NOT FOUND := 11001 , (* No such host is known. ¥*)
WSATRY_ AGAIN := 11002 ,

(* This is usually a temporary error during hostname resolution and means that the local server did
not receive a response from an authoritative server. *)
WSANO RECOVERY := 11003 , (* A non-recoverable error occurred during a database lookup. *)
WSANO DATA := 11004 (* The requested name is valid and was found in the database, but it doe
s not have the correct associated data being resolved for. *)
)7
END TYPE

Requirements

Development environment Target system type PLC libraries to include (cate-
gory group)
TwinCAT v3.1.0 PC, or CX (x86, X64, Arm®) Tc2_Tcplp (communication)

5.3.5 ST_SockAddr

The structure contains address information of an open socket.

TF6310 Version: 1.5.1 59

PLC API BECKHOFF
Syntax
TYPE ST SockAddr : (* Local or remote endpoint address *)
STRUCT
nPort : UDINT; (* Internet Protocol (IP) port. *)
sAddr : STRING(1l5); (* String containing an (Ipv4) Internet Protocol dotted address. *)
END_STRUCT
END_TYPE
Values
Name Type Description
nPort UDINT Internet Protocol (IP) port
sAddr STRING(15) Internet Protocol address separated by periods (Ipv4) in the form of a string e.g.:
"172.34.12.3"

Requirements

Development environment

Target system type

PLC libraries to include (cate-
gory group)

TwinCAT v3.1.0

PC, or CX (x86, X64, Arm®)

Tc2_Tcplp (communication)

5.3.6

ST_TIsConnectFlags

Additional (optional) client connection parameters.

Syntax

TYPE ST TlsConnectFlags :
STRUCT

bNoServerCertCheck: BOOL;

bIgnoreCnMismatch : BOOL;
END_STRUCT
END TYPE
Values
Name Type Description
bNoServerCertCheck BOOL Disables validation of the server certificate.
blgnoreCnMismatch BOOL Ignored if the CommonName in the server certificate does not
match the host name specified as sRemoteHost.

Requirements

Development environment

Target platform

PLC libraries to be integrated
(category group)

TF6310 v3.3.15.0 or later
TwinCAT v3.1.0

PC or CX (x86, x64, Arm®)

Tc2_Tcplp (Communication)

5.3.7

ST _TlisListenFlags

Additional (optional) server connection parameters.

Syntax

TYPE ST TlsListenFlags :

STRUCT
bNoClientCert :

END STRUCT

END TYPE

BOOL;

60

Version: 1.5.1

TF6310

BECKHOFF PLC API

Values
Name Type Description
bNoClientCert BOOL Client certificate is not required.

Requirements

Development environment Target platform PLC libraries to be integrated
(category group)

TF6310 v3.3.15.0 or later PC or CX (x86, x64, Arm®) Tc2_Tceplp (Communication)

TwinCAT v3.1.0

5.3.8 T_HSERVER

The variable of this type represents a TCP/IP Server Handle. The Handle has to be initialized with
F CreateServerHnd [P 53] bevor it can be used. In doing so the internal parameters of variables T_HSERVER
are set.

® Preserve the default structure elements
1 The structure elements are not to be written or changed.

Requirements

Development environment Target system type PLC libraries to include (cate-
gory group)
TwinCAT v3.1.0 PC, or CX (x86, X64, Arm®) Tc2_Tcplp (communication)

5.3.9 T_HSOCKET

Variables of this type represent a connection handle or a handle of an open socket. Via this handle, data can
be sent to or received from a socket. The handle can be used to close an open socket.

Syntax
TYPE T HSOCKET
STRUCT
handle : UDINT;
localAddr : ST_SockAddr; (* Local address ¥*)
remoteAddr : ST SockAddr; (* Remote endpoint address *)
ENDisTRUCT
END_ TYPE
Values
Name Type Description
handle UDINT Internal TwinCAT TCP/IP Connection Server socket handle.
localAddr ST_SockAddr Local socket address [P 59].
remoteAddr ST_SockAddr Remote socket address [P 59].

The following sockets can be opened and closed via the TwinCAT TCP/IP Connection Server: Listener
socket, Remote Client socket or Local Client socket. Depending on which of these sockets was opened by
the TwinCAT TCP/IP Connection Server, suitable address information is entered into the localAddr and
remoteAddr variables.

Connection handle on the server side

» The function block FB Socketlisten [P 26] opens a listener socket and returns the connection handle of
the listener socket.

TF6310 Version: 1.5.1 61

PLC AP BECKHOFF

* The connection handle of the listener sockets is transferred to the function block FB_SocketAccept
[» 27]. FB_SocketAccept will then return the connection handles of the remote clients.

« The function block FB_SocketAccept returns a new connection handle for each connected remote
client.

* The connection handle is then transferred to the function blocks FB SocketSend [» 28] and/or
FB SocketReceive [P_30], in order to be able to exchange data with the remote clients.

« A connection handle of a remote client that is not desirable or no longer required is transferred to the
function block FB_SocketClose [P 24], which closes the remote client socket.

» Alistener socket connection handle that is no longer required is also transferred to the function block
FB_SocketClose, which closes the listener socket.

Connection handle on the client side

* The function block FB_SocketConnect [P 23] returns the connection handle of a local client socket.

* The connection handle is then transferred to the function blocks FB_SocketSend [» 28] and
FB SocketReceive [»_30], in order to be able to exchange data with a remote server.

* The same connection handle is then transferred to the function block FB SocketClose [P 24], in order to
close a connection that is no longer required.

The function block FB_SocketCloseAll [»_25] can be used to close all connection handles (sockets) that were
opened by a PLC runtime system. This means that, if FB_SocketCloseAll is called in one of the tasks of the
first runtime systems (port 801), all sockets that were opened in the first runtime system are closed.

Requirements

Development environment Target system type PLC libraries to include (cate-
gory group)
TwinCAT v3.1.0 PC, or CX (x86, X64, Arm®) Tc2_Teplp (communication)

54 Global constants

5.4.1 Library version

All libraries have a certain version. This version is displayed in the repository of the PLC library.
The version number of the library is stored in a global constant (type: ST_LibVersion).
Global_Version

VAR GLOBAL CONSTANT
stLibVersion Tc2 TcpIp : ST LibVersion;
END VAR

The F_CmpLibVersion function (in the Tc2_System library) is used to compare the existing and required
version.

® Compatibility with TwinCAT 2
1 Query options for TwinCAT2 libraries are no longer available!

Requirements

Development environment Target system type PLC libraries to include (cate-
gory group)
TwinCAT v3.1.0 PC, or CX (x86, X64, Arm®) Tc2_Tcplp (communication)

62 Version: 1.5.1 TF6310

BECKHOFF

PLC API
5.4.2 Parameter list
Param
Name Type |Value Description
TCPADS_MAXUDP_BUFFSIZE |UDINT |16#2000 Max. byte length of the internal UDP send/receive
buffer (8192 bytes).
TCPADS_TLS_HOSTNAME_SI |UDINT |255 Max. length of the host name string.
ZE
TCPADS_TLS_CERTIFICATE_ |UDINT |255 Max. length of the certificate path string.
PATH_SIZE
TCPADS_TLS_KEY_PASSWO |UDINT |255 Max. length of the certificate password path string.
RD_SIZE
TCPADS_TLS_PSK_IDENTITY |UDINT |255 Max. length of the PSK identity string.
_SIZE
TCPADS_TLS_MAX_PSK_KEY |UDINT |128 Max. byte length of the PSK key.
_SIZE
Requirements
Development environment Target platform PLC libraries to be integrated

(category group)

TF6310 v3.3.15.0 or later
TwinCAT v3.1.0

PC or CX (x86, x64, Arm®)

Tc2_Tcplp (Communication)

TF6310

Version: 1.5.1

63

Samples BEGKHOFF

6 Samples

Overview

The following samples of using the product as a TCP/IP client/server are available for download in our
GitHub repository (see below).

Link Description
Quick Start [»_19] Enables a quick start to using the product as a TCP/IP

client/server.

Sample01: "Echo" client/server (basic function Demonstrates the exemplary implementation of a TCP/IP
blocks) [» 65] client/server application, which cyclically exchanges a
message between client and server. The basic function
blocks serve as a basis.

Sample02: “Echo” client /server [P 84] Demonstrates the exemplary implementation of a TCP/IP
client/server application, which cyclically exchanges a
message between client and server. The helper function
blocks serve as the basis. The application allows a
maximum of one connection.

Sample03: “Echo” client/server [» 85] Demonstrates the exemplary implementation of a TCP/IP
client/server application, which cyclically exchanges a
message between client and server. The helper function
blocks serve as the basis. The application allows multiple
connections.

Sample04: Binary data exchange [» 87] Demonstrates the exemplary implementation of a TCP/IP
client/server application that implements its own binary
protocol for data exchange. The application allows a
maximum of one connection.

Sample05: Binary data exchange [» 89] Demonstrates the exemplary implementation of a TCP/IP
client/server application that implements its own binary
protocol for data exchange. The application allows
multiple connections.

Sample06: "Echo” client/server with TLS (basic | This sample is essentially based on Sample01 and

modules) [» 90] extends it with TLS.
Sample07: "Echo" client/server with TLS-PSK This sample is essentially based on Sample01 and
(basic modules) [» 91] extends it with TLS-PSK.

The following samples of using the product as a UDP/IP client/server are available for download in our
GitHub repository (see below).

Link Description

Sample01: Peer-to-peer communication [91] | This sample demonstrates the implementation of a simple
peer-to-peer application in the PLC.

Sample02: Multicast [> 99] This sample demonstrates how multicast messages can
be sent and received via UDP.

Downloads

Sample code and configurations for this product can be obtained from the corresponding repository on
GitHub: https://github.com/Beckhoff/TF6310 Samples. There you have the option to clone the repository or
download a ZIP file containing the sample.

64 Version: 1.5.1 TF6310

https://github.com/Beckhoff/TF6310_Samples

BECKHOFF Samples

B3 Clone ©)]

HTTPS GitHub CLI

https://github.com/Beckhoff/TFE318_Samples E]

Use Git or checkout with SVN using the web URL
}) Open with GitHub Desktop

() Download ZIP

6.1 TCP

6.1.1 Sample01: "Echo" client/server (basic function blocks)

6.1.1.1 Overview

The following example shows an implementation of an "echo" client/server. The client sends a test string to
the server at certain intervals (e.g. every second). The remote server then immediately resends the same
string to the client.

In this sample, the client is implemented in the PLC and as a .NET application written in C#. The PLC client
can create several instances of the communication, simulating several TCP connections at once. The .NET
sample client only establishes one concurrent connection. The server is able to communicate with several
clients.

In addition, several instances of the server may be created. Each server instance is then addressed via a
different port number which can be used by the client to connect to a specific server instance. The server
implementation is more difficult if the server has to communicate with more than one client.

Feel free to use and customize this sample to your needs.

System requirements
* TwinCAT 3 Build 3093 or higher
* TwinCAT 3 Function TF6310 TCP/IP

+ If two computers are used to execute the sample (one client and one server), the Function TF6310
needs to be installed on both computers

+ If one computer is used to execute the sample, e.g. client and server running in two separate PLC
runtimes, both PLC runtimes need to run in separate tasks

* Torun the .NET sample client, only .NET Framework 4.0 is needed

Project downloads

https://github.com/Beckhoff/TF6310 Samples/tree/master/PLC/TCP/Sample01

https://github.com/Beckhoff/TF6310 Samples/tree/master/C%23/SampleClient

TF6310 Version: 1.5.1 65

https://github.com/Beckhoff/TF6310_Samples/tree/master/PLC/TCP/Sample01
https://github.com/Beckhoff/TF6310_Samples/tree/master/C%23/SampleClient

Samples BEGKHOFF

Project description

The following links provide documentation for the three components. Additionally, an own article explains
how to start the PLC samples with step-by-step instructions.

* Integration in TwinCAT and Test [P _67] (Starting the PLC samples)

* PLC Client [»_70] (PLC client documentation: FB LocalClient function block [P_70])
» PLC Server [P 74] (PLC serve documentation: FB LocalServer function block [P 74])
+ .NET client [» 80] (.NET client documentation: .NET sample client [»_80])

Additional functions of the PLC sample projects

Some functions, constants and function blocks are used in the sample projects, which are briefly described
below:

LogError function

FUNCTION LogError : DINT

LOGERROR

—Imsgy STRIMGE0) LogError: DINTR—
—nErrld . DWORD

The function writes a message with the error code into the logbook of the operating system (Event Viewer).
The global variable bLogDebugMessages must first be set to TRUE.

LogMessage function

FUNCTION LogMessage : DINT

LOGMESSAGE

—msg : STRIMNGE0) LogMessage : DINTH—
—{hSocket: T_HSOCKET

The function writes a message into the logbook of the operating system (Event Viewer) if a new socket was
opened or closed. The global variable bLogDebugMessages must first be set to TRUE.

SCODE_CODE function

FUNCTION SCODE_CODE : DWORD

SCODE_CODE

—5c UDINT SCODE_CODE : DWORD—

The function masks the least significant 16 bits of a Win32 error code returns them.

66 Version: 1.5.1 TF6310

BEGKHOFF Samples

Global variables

Name Default value Description

bLogDebugMessages TRUE Activates/deactivates writing of messages into the
log book of the operating system

MAX_CLIENT_CONNECTIONS 5 Max. number of remote clients, that can connect
to the server at the same time.

MAX_PLCPRJ_RXBUFFER_SIZE 1000 Max. length of the internal receive buffer

PLCPRJ_RECONNECT_TIME T#3s Once this time has elapsed, the local client will

attempt to re-establish the connection with the
remote server

PLCPRJ_SEND_CYCLE_TIME T#1s The test string is sent cyclically at these intervals
from the local client to the remote server

PLCPRJ_RECEIVE_POLLING _TI |T#1s The client reads (polls) data from the server using

ME this cycle

PLCPRJ_RECEIVE_TIMEOUT T#10s After this time has elapsed, the local client aborts

the reception if no data bytes could be received
during this time

PLCPRJ_ERROR_RECEIVE_BUF |16#8101 Sample project error code: Too many characters
FER_OVERFLOW without zero termination were received
PLCPRJ_ERROR_RECEIVE_TIM |16#8102 Sample project error code: No new data could be
EOUT received within the timeout time

(PLCPRJ_RECEIVE_TIMEOUT)

6.1.1.2 Integration in TwinCAT and Test

The following section describes how to prepare and start the PLC server and client. The PLC samples are
provided as TwinCAT 3 PLC project files. To import a PLC project into TwinCAT XAE, first create a new
TwinCAT 3 Solution. Then select the Add Existing Item command in the context menu of the PLC node and
select the downloaded sample file (Plc 3.x Project archive (*.tpzip)) as the file type in the dialog that opens.
After confirming the dialog, the PLC project is added to the Solution.

Solution Explorer

‘g Solution TwinCAT Project22' (1 project)
4[5 TwinCAT Project22
o | SYSTEM
MOTION
PLC

Add New Item... Ctrl+Shift+ A | SAFETY
Add Existing Item... Shift+Alt+A C++
o

Add Project from Source Control...

1y Paste Ctrl+V
Paste with Links

% Import PLCopenXML...

Sample PLC server

Create a new TwinCAT 3 solution in TwinCAT XAE and import the TwinCAT TCP/IP server project. Select a
target system. The function must also be installed on the target system and licenses for TF6310 must have
been generated. Keep the TwinCAT 3 Solution open.

PROGRAM MAIN

VAR

fbServer : FB LocalServer := (sLocalHost := '127.0.0.1"' (*own IP address!
*), nLocalPort := 200);

TF6310 Version: 1.5.1 67

Samples BEGKHOFF

bEnableServer : BOOL := TRUE;
fbSocketCloseAll : FB SocketCloseAll := (sSrvNetID := '', tTimeout := DEFAULT ADS TIMEOUT);
bCloseAll : BOOL := TRUE;

END VAR

IF bCloseAll THEN (*On PLC reset or program download close all old connections *)

bCloseAll := FALSE;

fbSocketCloseAll (bExecute:= TRUE) ;
ELSE

fbSocketCloseAll (bExecute:= FALSE);
END IF

IF NOT fbSocketCloseAll.bBusy THEN
fbServer (bEnable := bEnableServer);
END IF

Sample PLC client

Import the TCP/IP client project into the TwinCAT 3 Solution as a second PLC project. Link this PLC project
to a different task than the server sample. The IP address of the server must be adapted to your system
(initialization values of the sRemoteHost variable). In this case, the server is on the same PC, so enter
127.0.0.1. Enable the configuration, log in and start the server and then the client PLC project.

PROGRAM MAIN

VAR
fbClientl : FB LocalClient := (sRemoteHost:= '127.0.0.1' (* IP address of remote server! *)
, nRemotePort:= 200);
fbClient?2 : FB LocalClient := (sRemoteHost:= '127.0.0.1', nRemotePort:= 200);
fbClient3 : FB LocalClient := (sRemoteHost:= '127.0.0.1', nRemotePort:= 200);
fbClient4 : FB LocalClient := (sRemoteHost:= '127.0.0.1', nRemotePort:= 200);
fbClient5 : FB LocalClient := (sRemoteHost:= '127.0.0.1', nRemotePort:= 200);
bEnableClientl : BOOL := TRUE;
bEnableClient2 : BOOL := FALSE;
bEnableClient3 : BOOL := FALSE;
bEnableClient4 : BOOL := FALSE;
bEnableClient5 : BOOL := FALSE;
fbSocketCloseAll : FB SocketCloseAll := (sSrvNetID := '', tTimeout := DEFAULT ADS TIMEOUT);
bCloseAll : BOOL := TRUE;
nCount : UDINT;
END VAR
IF bCloseAll THEN (*On PLC reset or program download close all old connections ¥*)
bCloseAll := FALSE;
fbSocketCloseAll (bExecute:= TRUE) ;
ELSE
fbSocketCloseAll (bExecute:= FALSE);
END IF

IF NOT fbSocketCloseAll.bBusy THEN
nCount := nCount + 1;
fbClientl (bEnable :=
))i

fbClient2 (bEnable
))i

fbClient3 (bEnable
))i

fbClient4 (bEnable

fbClient5(bEnable

END IF

bEnableClientl, sToServer := CONCAT('CLIENT1-', UDINT TO STRING(nCount)

bEnableClient2, sToServer CONCAT ('CLIENT2-', UDINT TO STRING(nCount)

bEnableClient3, sToServer CONCAT ('CLIENT3-', UDINT TO STRING(nCount)

bEnableClient4d);
bEnableClient5);

When setting one of the bEnableCientX variables, up to five client instances can be enabled. Each client
sends one string per second to the server (default: 'TEST'). The server returns the same string to the client
(echo server). For the test, a string with a counter value is generated automatically for the first three
instances. The first client is enabled automatically when the program is started. Set the bEnableCilent4
variable in the client project to TRUE. The new client then attempts to establish a connection to the server. If
successful, the 'TEST' string is sent cyclically. Now open the fbClient4 instance of the FB_LocalClient
function block. Double-click to open the dialog for writing the sToString variable and change the value of the
string variable to 'Hello', for example.

68 Version: 1.5.1 TF6310

BECKHOFF

Samples

|| MAIN [Online]

TwinCAT_Project17.TcpIp_CLIENT.MAIN

:E @ @@ @ @ @@ @

Expression

@ fhClient1

@ fhClient2

i fbClient3

@ fhClient4
4% sRemoteHost
%% nRemotePort

+

+

+

4% sToServer

% hEnable

Fdé hConnected
+ "# hSocket

"& bBusy

“& hErrar

& nErrld

Fd@ sFromServer

Type
FE_LocalClient
FE_LocalClient
FB_LocalClient
FE_LocalClient
STRING(15)
UDINT
STRIMG(255)
BOOL

BOOL
T_HSOCKET
BOOL

BOOL

UDINT
STRIMG{255)

Value Prepared value
'127.0.0.1"

200

Test' ‘Hello Warld’

FALSE
0
Test'

Close the dialog with OK. Force the new value into the PLC. Shortly afterwards, the value returned by the

server can be viewed online.

TwinCAT_Project17.Tcplp_CLIENT.MAIN

Expression
+ @ fbClientl
+ @ fbClient2
+ @ fhClient3
= @ fbClient4
4% sRemoteHost
4% nRemotePort
4% sToServer
4% bEnahle
"4 bConnected
P hSocket
“é bBuzy
P& bError
P nErrld

"

sFromServer

Type
FBE_LocalClient
FE_LocalClient
FB_LocalClient
FB_LocalClient
STRING(15)
UDINT
STRING(255)
BOOL

BOOL
T_HSOCKET
BOOL

BOOL

UDINT
STRING(255)

Yalue Prepared value

'127.0.0.1
200
‘Hello World

TRUE

TRUE
FALSE

‘Hello World

L

T=
=
%]

IG

Now open the fbServer instance of the FB_LocalServer function block in the server project. The string: 'Hello'

can be seen in the online data of the server.

TF6310

Version: 1.5.1

69

Samples

BECKHOFF

MAIM [Online]

TwinCAT_Project17.TcpIp_SERVER.MAIN

s @ @@ @ @@ @

Expression
= & fbRemoteClient
+ & fbRemoteClient[1]
+ @ fbRemoteClient[2]
+ & fbRemoteClient[3]
= ¢ fbRemoteClient[4]
+ & hListener
4% bEnable
F# bAccepted
Pdn hsocket
P& bBusy
P& bError
Fdn nErrlD
g

sFromClient

+ @ fbAccept

Type

ARRAY [1..MAX_CLL...

FBE_RemaoteClient
FB_RemoteClient
FE_RemoteClient
FB_RemoteClient
T_HSOCKET
BOOL

BOOL
T_HSOCKET
BOOL

BOOL

UDINT
STRING(255)
FBE_Socketfccept

Yalue Prepared value

FALSE

0
| 'Hello world'

6.1.1.3 PLC Client
6.1.1.3.1 FB_LocalClient
FBE_LocalClient
—sRemoteHost bConnected—
—nRemotePaort hSocket—
—sTaserer bBusywi—
—hEnahle bError—
nErld—
sFromServer—

If the bEnable input is set, the system will keep trying to establish the connection to the remote server once
the CLIENT_RECONNECT_TIME has elapsed. The remote server is identified via the sRemoteHost IP
address and the nRemotePort IP port address. The data exchange with the server was encapsulated in a
separate function block FB_ClientDataExcha [P_72]. The data exchange is cyclic, always after
PLCPRJ_SEND_CYCLE_TIME has expired. The sToServer string variable is sent to the server and the
string returned by the server is available at the sFormServer output. Another implementation, in which the
remote server is addressed as required is also possible. In the event of an error, the existing connection is
closed, and a new connection is established.

Interface
FUNCTION BLOCK FB LocalClient
VAR INPUT
sRemoteHost : STRING(15) := '127.0.0.1'; (* IP adress of remote server *)
nRemotePort : UDINT := 0;
sToServer : T MaxString:= 'TEST';
bEnable : BOOL;
END VAR
VAR OUTPUT
bConnected : BOOL;
hSocket : T_HSOCKET;
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
sFromServer : T_MaxString;
END VAR
VAR
fbConnect : FB SocketConnect := (sSrvNetId := '');
fbClose : FB_SocketClose := (sSrvNetId := '', tTimeout := DEFAULT ADS_ TIMEOUT) ;
fbClientDataExcha : FB ClientDataExcha;
70 Version: 1.5.1 TF6310

BECKHOFF

Samples

fbConnectTON : TON := (PT := PLCPRJ_RECONNECT TIME);
fbDataExchaTON : TON := (PT := PLCPRJ_SEND CYCLE TIME);
eStep : E_ClientSteps;

END VAR

Implementation

CASE eStep OF
CLIENT STATE IDLE:
IF bEnable XOR bConnected THEN
bBusy := TRUE;
bError := FALSE;
nErrid := 0;
sFromServer := '';
IF bEnable THEN
fbConnectTON(IN := FALSE);
eStep := CLIENT_ STATE CONNECT_ START;
ELSE
eStep
END IF
ELSIF bConnected THEN
fbDataExchaTON(IN := FALSE);
eStep := CLIENT STATE DATAEXCHA START;
ELSE
bBusy := FALSE;
END IF

CLIENT STATE CLOSE START;

CLIENT STATE CONNECT START:
fbConnectTON(IN := TRUE, PT := PLCPRJ_RECONNECT TIME);
IF fbConnectTON.Q THEN
fbConnectTON (IN := FALSE);
fbConnect (bExecute := FALSE);
fbConnect (sRemoteHost := sRemoteHost,
nRemotePort := nRemotePort,
bExecute := TRUE);
eStep := CLIENT STATE CONNECT WAIT;
END IF

CLIENT STATE CONNECT WATIT:
fbConnect (bExecute := FALSE);
IF NOT fbConnect.bBusy THEN
IF NOT fbConnect.bError THEN

bConnected := TRUE;
hSocket := fbConnect.hSocket;
eStep := CLIENT STATE IDLE;
LogMessage ('LOCAL client CONNECTED!', hSocket);
ELSE
LogError ('FB SocketConnect', fbConnect.nErrId);
nErrId := fbConnect.nErrId;
eStep := CLIENT_ STATE ERROR;
END IF
END IF

CLIENT STATE DATAEXCHA START:

fbDataExchaTON(IN := TRUE, PT := PLCPRJ_SEND CYCLE TIME)8
IF fbDataExchaTON.Q THEN
fbDataExchaTON(IN := FALSE);
fbClientDataExcha (bExecute := FALSE);
fbClientDataExcha (hSocket := hSocket,
sToServer := sToServer,
bExecute := TRUE) ;
eStep := CLIENT STATE DATAEXCHA WAIT;
END IF

CLIENT STATE DATAEXCHA WAIT:
fbClientDataExcha (bExecute := FALSE);
IF NOT fbClientDataExcha.bBusy THEN
IF NOT fbClientDataExcha.bError THEN
sFromServer := fbClientDataExcha.sFromServer;
eStep := CLIENT STATE IDLE;
ELSE
(* possible errors are logged inside of fbClientDataExcha
nErrId := fbClientDataExcha.nErrId;
eStep :=CLIENT_STATE ERROR;
END IF
END IF

CLIENT STATE CLOSE START:
fbClose (bExecute := FALSE);

function block

*)

TF6310 Version: 1.5.1

71

Samples BEGKHOFF

fbClose (hSocket:= hSocket,
bExecute:= TRUE) ;
eStep := CLIENT STATE CLOSE WAIT;

CLIENT STATE CLOSE WAIT:
fbClose (bExecute := FALSE);
IF NOT fbClose.bBusy THEN
LogMessage ('LOCAL client CLOSED!', hSocket);
bConnected := FALSE;
MEMSET (ADR (hSocket), 0, SIZEOF (hSocket));
IF fbClose.bError THEN
LogError('FB SocketClose (local client)', fbClose.nErrId);

nErrId := fbClose.nErrId;

eStep := CLIENT STATE ERROR;
ELSE

bBusy := FALSE;

bError := FALSE;

nErrId := 0;

eStep := CLIENT STATE IDLE;

END IF
END IF

CLIENT STATE ERROR: (* Error step *)
bError := TRUE;
IF bConnected THEN
eStep := CLIENT STATE CLOSE START;
ELSE
bBusy := FALSE;
eStep := CLIENT STATE IDLE;
END IF
END CASE

6.1.1.3.2 FB_ClientDataExcha

FE_ClientDataExcha
hSocket bBusy—
sToServer bError—
hExecute nErld—

sFromSerser—

In the event of an rising edge at the bExecute input, a null-terminated string is sent to the remote server, and

a string returned by the remote server is read. The function block will try reading the data until null
termination was detected in the string received. If the PLCPRJ_RECEIVE_TIMEOUT time-out period is
exceeded or if an error occurs, reception is aborted. Data are attempted to be read again after a certain
delay time, if no new data could be read during the last read attempt. This reduces the system load.

Interface
FUNCTION BLOCK FB ClientDataExcha
VAR INPUT
hSocket : T_HSOCKET;
sToServer : T MaxString;
bExecute : BOOL;
END VAR
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
sFromServer : T MaxString;
END VAR
VAR
fbSocketSend : FB SocketSend := (sSrvNetID := '', tTimeout := DEFAULT ADS TIMEOUT) ;
fbSocketReceive : FB SocketReceive := (sSrvNetID := '', tTimeout := DEFAULT ADS TIMEOUT) ;

fbReceiveTON : TON;
fbDisconnectTON : TON;
RisingEdge : R _TRIG;

eStep : E DataExchaSteps;

cbReceived, startPos, endPos, idx : UDINT;

cbFrame : UDINT;

rxBuffer 3 ARRAY[O..MAX_PLCPRJ_RXBUFFER_SIZE] OF BYTE;
END VAR

72 Version: 1.5.1 TF6310

BEGKHOFF Samples

Implementation

RisingEdge (CLK := bExecute);
CASE eStep OF
DATAEXCHA STATE IDLE:
IF RisingEdge.Q THEN

bBusy := TRUE;

bError := FALSE;

nErrid := 0;

cbReceived := 0;

fbReceiveTON(IN := FALSE, PT := T#0s); (* don't wait, read the first answer data immed
iately *)

fbDisconnectTON(IN := FALSE, PT := T#0s); (* disable timeout check first *)

eStep := DATAEXCHA STATE SEND START;

END IF

DATAEXCHA STATE SEND START:

fbSocketSend (bExecute := FALSE);

fbSocketSend (hSocket := hSocket,
pSrc := ADR(sToServer),
cbLen := LEN(sToServer) + 1, (* string length inclusive zero delimiter *)
bExecute:= TRUE) ;

eStep := DATAEXCHA STATE SEND WAIT;

DATAEXCHA STATE_ SEND WAIT:
fbSocketSend (bExecute := FALSE);
IF NOT fbSocketSend.bBusy THEN
IF NOT fbSocketSend.bError THEN
eStep := DATAEXCHA STATE RECEIVE_ START;
ELSE
LogError ('FB SocketSend (local client)', fbSocketSend.nErrId);

nErrId fbSocketSend.nErrId;
eStep := DATAEXCHA STATE ERROR;
END IF

END IF

DATAEXCHA STATE RECEIVE START:

fbDisconnectTON() ;

fbReceiveTON(IN := TRUE);

IF fbReceiveTON.Q THEN
fbReceiveTON(IN := FALSE);
fbSocketReceive (bExecute := FALSE);
fbSocketReceive (hSocket:= hSocket,

pDest:= ADR(rxBuffer) + cbReceived,

cbLen:= SIZEOF(rxBuffer) - cbReceived,
bExecute:= TRUE) ;
eStep := DATAEXCHA STATE RECEIVE WATIT;

END IF

DATAEXCHA STATE RECEIVE WAIT:
fbSocketReceive (bExecute := FALSE);
IF NOT fbSocketReceive.bBusy THEN
IF NOT fbSocketReceive.bError THEN
IF (fbSocketReceive.nRecBytes > 0) THEN (* bytes received *)

startPos := cbReceived; (* rxBuffer array index of first data byte *)
endPos := cbReceived + fbSocketReceive.nRecBytes - 1;
(* rxBuffer array index of last data byte *)
cbReceived := cbReceived + fbSocketReceive.nRecBytes;
(* calculate the number of received data bytes *)
cbFrame := 0; (* reset frame length ¥*)
IF cbReceived < SIZEOF(sFromServer) THEN(* no overflow *)
fbReceiveTON (PT := T#0s); (* bytes received => increase the read (polling)
speed *)
fbDisconnectTON (IN := FALSE); (* bytes received => disable timeout check *)
(* search for string end delimiter *)
FOR idx := startPos TO endPos BY 1 DO
IF rxBuffer[idx] = 0 THEN(* string end delimiter found *)
cbFrame := idx + 1;

(* calculate the length of the received string (inclusive the end delimiter) *)

MEMCPY (ADR(sFromServer), ADR(rxBuffer), cbFrame);
(* copy the received string to the output variable (inclusive the end delimiter) *)

MEMMOVE (ADR(rxBuffer), ADR(rxBuffer[cbFrame]), cbReceived -
cbFrame); (* move the reamaining data bytes *)

cbReceived := cbReceived - cbFrame;
(* recalculate the remaining data byte length *)
bBusy := FALSE;
eStep := DATAEXCHA STATE IDLE;
EXIT;
END IF

END FOR

TF6310 Version: 1.5.1 73

Samples BEGKHOFF

ELSE (* there is no more free read buffer space => the answer string should be te

rminated *)
LogError('FB SocketReceive (local client)', PLCPRJ ERROR RECEIVE BUFFER OVE

RFLOW) ;
nErrId := PLCPRJ ERROR RECEIVE BUFFER OVERFLOW; (* buffer overflow =)
eStep := DATAEXCHA STATE ERROR;
END IF
ELSE (* no bytes received *)
fbReceiveTON (PT := PLCPRJ RECEIVE POLLING TIME) ;
(* no bytes received => decrease the read (polling) speed ¥*)
fbDisconnectTON(IN := TRUE, PT := PLCPRJ RECEIVE TIMEOUT);

(* no bytes received => enable timeout check*)
IF fbDisconnectTON.Q THEN (* timeout error*)

fbDisconnectTON(IN := FALSE);
LogError('FB SocketReceive (local client)', PLCPRJ ERROR RECEIVE TIMEOUT) ;
nErrID := PLCPRJ_ERROR RECEIVE TIMEOUT;
eStep := DATAEXCHA STATE ERROR;
ELSE (* repeat reading ¥*)
eStep := DATAEXCHA STATE RECEIVE START; (* repeat reading *)
END IF
END IF
ELSE (* receive error *)
LogError ('FB SocketReceive (local client)', fbSocketReceive.nErrId);
nErrId := fbSocketReceive.nErrId;
eStep := DATAEXCHA STATE ERROR;
END IF
END IF

DATAEXCHA STATE ERROR: (* error step *)

bBusy := FALSE;
bError := TRUE;
cbReceived := 0;
eStep := DATAEXCHA STATE IDLE;
END CASE
6.1.1.4 PLC Server
6.1.1.4.1 FB_LocalServer
FB_LocalServer
—sLocalHost blistening—
—nLocalPort hlListenearn—
—kEnable nAcceptedClients—
bBusyv—
bErrar—
nErrld—

The server must first be allocated a unique sLocalHost IP address and an nLocaPort IP port number. If the
bEnable input is set, the local server will repeatedly try to open the listener socket once the
SERVER_RECONNECT_TIME has elapsed. The listener socket can usually be opened at the first attempt, if
the TwinCAT TCP/IP Connection Server is located on the local PC. The functionality of a remote client was
encapsulated in the function block FB RemoteClient [P_76]. The remote client instances are activated once
the listener socket was opened successfully. Each instance of the FB_RemoteClient corresponds to a
remote client, with which the local server can communicate simultaneously. The maximum number of remote
clients communicating with the server can be modified via the value of the MAX_CLIENT_CONNECTIONS
constant. In the event of an error, all remote client connections are closed first and then the listener socket.
The nAcceptedClients output provides information about the current number of connected clients.

Interface

FUNCTION BLOCK FB LocalServer

VAR INPUT
sLocalHost : STRING(15) := '127.0.0.1'; (* own IP address! *)
nLocalPort : UDINT := 0;
bEnable : BOOL;

END VAR

VAR OUTPUT
bListening : BOOL;
hListener : T _HSOCKET;
nAcceptedClients : UDINT;
bBusy : BOOL;

74 Version: 1.5.1 TF6310

BEGKHOFF Samples

bError : BOOL;
nErrId : UDINT;
END_ VAR
VAR
fbListen : FB SocketListen := (sSrvNetID := '', tTimeout := DEFAULT ADS TIMEOUT) ;
fbClose : FB_SocketClose := (sSrvNetID := '', tTimeout := DEFAULT ADS TIMEOUT);
fbConnectTON : TON := (PT := PLCPRJ_RECONNECT TIME);
eStep : E_ServerSteps;
fbRemoteClient : ARRAY[1..MAX CLIENT CONNECTIONS] OF FB RemoteClient;
i : UDINT;
END_ VAR

Implementation
CASE eStep OF

SERVER STATE IDLE:
IF bEnable XOR bListening THEN
bBusy := TRUE;
bError := FALSE;
nErrId := 0;
IF bEnable THEN
fbConnectTON (IN := FALSE);
eStep := SERVER STATE LISTENER OPEN START;
ELSE
eStep := SERVER STATE REMOTE CLIENTS CLOSE;
END IF
ELSIF bListening THEN
eStep := SERVER STATE REMOTE CLIENTS_ COMM;
END IF

SERVER STATE LISTENER OPEN START:
fbConnectTON(IN := TRUE, PT := PLCPRJ RECONNECT TIME) ;
IF fbConnectTON.Q THEN
fbConnectTON(IN := FALSE);
fbListen (bExecute := FALSE);
fbListen (sLocalHost:= sLocalHost,
nLocalPort:= nLocalPort,
bExecute := TRUE);
eStep := SERVER STATE LISTENER OPEN WAIT;
END IF

SERVER STATE LISTENER OPEN WAIT:
fbListen (bExecute := FALSE);
IF NOT fbListen.bBusy THEN
IF NOT fbListen.bError THEN
bListening := TRUE;
hListener fbListen.hListener;

eStep = SERVER STATE IDLE;
LogMessage ('LISTENER socket OPENED!', hListener);
ELSE
LogError ('FB SocketListen', fblListen.nErrId);
nErrId := fbListen.nErrId;
eStep := SERVER STATE ERROR;
END IF
END IF

SERVER STATE REMOTE CLIENTS COMM:
eStep := SERVER STATE IDLE;
nAcceptedClients := 0;
FOR i:= 1 TO MAX CLIENT CONNECTIONS DO
fbRemoteClient[i] (hListener := hListener, bEnable := TRUE);
IF NOT fbRemoteClient[i].bBusy AND fbRemoteClient[i].bError THEN (*FB_SocketAccept r
eturned error!¥*)
eStep := SERVER STATE REMOTE CLIENTS CLOSE;
EXIT;
END IF
(* count the number of connected remote clients *)
IF fbRemoteClient[i].bAccepted THEN
nAcceptedClients := nAcceptedClients + 1;
END IF
END_FOR

SERVER STATE REMOTE CLIENTS CLOSE:

nAcceptedClients := 0;
eStep := SERVER STATE LISTENER CLOSE_ START; (* close listener socket too *)
FOR i:= 1 TO MAX CLIENT CONNECTIONS DO
fbRemoteClient[i] (bEnable := FALSE); (* close all remote client (accepted) sockets ¥*)

(* check if all remote client sockets are closed *)
IF fbRemoteClient[i].bAccepted THEN

TF6310 Version: 1.5.1 75

BECKHOFF

(* stay here and close all remote client

Samples
eStep := SERVER STATE REMOTE CLIENTS CLOSE;
s first *)
nAcceptedClients := nAcceptedClients + 1;
END IF
END FOR

SERVER STATE LISTENER CLOSE_START:

fbClose (bExecute := FALSE);

fbClose (hSocket := hListener,
bExecute:= TRUE) ;

eStep := SERVER STATE LISTENER CLOSE WAIT;

SERVER STATE LISTENER CLOSE WATT:
fbClose (bExecute := FALSE);
IF NOT fbClose.bBusy THEN
LogMessage ('LISTENER socket CLOSED!',
bListening := FALSE;
MEMSET (ADR (hListener), O,
IF fbClose.bError THEN

LogError('FB SocketClose (listener)',
nErrId := fbClose.nErrId;
eStep := SERVER STATE ERROR;
ELSE
bBusy := FALSE;
bError := FALSE;
nErrId := 0;
eStep := SERVER STATE IDLE;
END IF

END IF

SERVER STATE ERROR:
bError := TRUE;
IF bListening THEN

eStep := SERVER STATE REMOTE CLIENTS CLOSE;
ELSE
bBusy := FALSE;
eStep := SERVER_STATE_IDLE;
END IF
END_CASE
6.1.1.4.2 FB_RemoteClient
FE_RemaoteClient
—hListener bAccepted—
—kbEnahle hSocket—
bBusw—
bError—
hErD—
sFromClient—

SIZEOF (hListener)) ;

hListener);

fbClose.nErrId);

If the bEnable input is set, an attempt is made to accept the connection request of a remote client, once the
SERVER_ACCEPT_POOLING_TIME has elapsed. The data exchange with the remote client was

encapsulated in a separate function block FB ServerDataExcha [P 78]. Once the connection was established

successfully, the instance is enabled via the FB_ServerDataExcha function block. If an error occurs, the

accepted connection is closed and a new one is established.

Interface
FUNCTION BLOCK FBiRemoteClient
VAR INPUT
hListener T HSOCKET;
bEnable BOOL;
END VAR
VAR OUTPUT
bAccepted BOOL;
hSocket T HSOCKET;
bBusy BOOL;
bError BOOL;
nErrID UDINT;
sFromClient T MaxString;
END VAR
VAR
fbAccept FB_SocketAccept := (sSrvNetID := '', tTimeout := DEFAULT ADS TIMEOUT) ;
76 Version: 1.5.1 TF6310

BEGKHOFF Samples

fbClose : FB_SocketClose := (sSrvNetID := '', tTimeout := DEFAULT ADS_ TIMEOUT) ;
fbServerDataExcha : FB_ServerDataExcha;
fbAcceptTON : TON := (PT := PLCPRJ_ACCEPT_ POLLING TIME);
eStep : E ClientSteps;
END VAR

Implementation
CASE eStep OF
CLIENT STATE IDLE:

IF bEnable XOR bAccepted THEN
bBusy := TRUE;

bError := FALSE;
nErrId := 0;
sFromClient := '';
IF bEnable THEN
fbAcceptTON(IN := FALSE);
eStep := CLIENT STATE CONNECT START;
ELSE
eStep := CLIENT STATE CLOSE_ START;
END IF
ELSIF bAccepted THEN
eStep := CLIENT STATE DATAEXCHA START;
ELSE
bBusy := FALSE;
END IF

CLIENT STATE CONNECT START:

fbAcceptTON(IN := TRUE, PT := PLCPRJ_ACCEPT POLLING TIME) e
IF fbAcceptTON.Q THEN

fbAcceptTON(IN := FALSE);

fbAccept (bExecute := FALSE);

fbAccept (hListener := hListener,

bExecute:= TRUE) ;

eStep := CLIENT STATE CONNECT WAIT;

END IF

CLIENT STATE CONNECT WATIT:
fbAccept (bExecute := FALSE);
IF NOT fbAccept.bBusy THEN
IF NOT fbAccept.bError THEN
IF fbAccept.bAccepted THEN

bAccepted := TRUE;
hSocket := fbAccept.hSocket;
LogMessage ('REMOTE client ACCEPTED!', hSocket);
END IF
eStep := CLIENT STATE IDLE;
ELSE
LogError ('FB_SocketAccept', fbAccept.nErrId);
nErrId := fbAccept.nErrId;
eStep := CLIENT STATE ERROR;
END IF
END IF

CLIENT STATE DATAEXCHA START:

fbServerDataExcha (bExecute := FALSE);

fbServerDataExcha (hSocket := hSocket,
bExecute := TRUE);

eStep := CLIENT STATE DATAEXCHA WAIT;

CLIENT STATE DATAEXCHA WAIT:
fbServerDataExcha (bExecute := FALSE, sFromClient=>sFromClient);
IF NOT fbServerDataExcha.bBusy THEN
IF NOT fbServerDataExcha.bError THEN

eStep := CLIENT STATE IDLE;
ELSE
(* possible errors are logged inside of fbServerDataExcha function block *)
nErrId := fbServerDatakExcha.nErrID;
eStep := CLIENT STATE ERROR;
END IF

END IF

CLIENT STATE CLOSE START:

fbClose (bExecute := FALSE);

fbClose (hSocket:= hSocket,
bExecute:= TRUE) ;

eStep := CLIENT STATE CLOSE WAIT;

CLIENT STATE CLOSE_WAIT:

TF6310 Version: 1.5.1 77

Samples BEGKHOFF

fbClose (bExecute := FALSE);
IF NOT fbClose.bBusy THEN
LogMessage ('REMOTE client CLOSED!', hSocket);
bAccepted := FALSE;
MEMSET (ADR(hSocket), 0, SIZEOF(hSocket));
IF fbClose.bError THEN
LogError('FB SocketClose (remote client)', fbClose.nErrId);

nErrId := fbClose.nErrId;

eStep := CLIENT STATE ERROR;
ELSE

bBusy := FALSE;

bError := FALSE;

nErrId := 0;

eStep := CLIENT STATE IDLE;
END IF

END IF

CLIENT STATE ERROR:

bError := TRUE;
IF bAccepted THEN
eStep := CLIENT STATE CLOSE START;
ELSE
eStep := CLIENT_STATE_IDLE;
bBusy := FALSE;
END IF
END_CASE
6.1.1.4.3 FB_ServerDataExcha
FB_ServerDataExcha
“hSocket bBusyr—
—hExecute bErrar—
hErlD—
sFromClient—

In the event of an rising edge at the bExecute input, a zero-terminated string is read by the remote client and
returned to the remote client, if zero termination was detected. The function block will try reading the data
until zero termination was detected in the string received. Reception is aborted in the event of an error, and if
no new data were received within the PLCPRJ_RECEIVE_TIMEOUT timeout time. Data are attempted to be
read again after a certain delay time, if no new data could be read during the last read attempt. This reduces
the system load.

Interface
FUNCTION BLOCK FB ServerDataExcha
VAR INPUT
hSocket : T HSOCKET;
bExecute : BOOL;
END VAR
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrID : UDINT;
sFromClient : T MaxString;
END VAR
VAR
fbSocketReceive : FB SocketReceive := (sSrvNetId := '', tTimeout := DEFAULT ADS TIMEOUT);
fbSocketSend : FB SocketSend := (sSrvNetId := '', tTimeout := DEFAULT ADS TIMEOUT);
eStep : E DataExchaSteps;

RisingEdge : R TRIG;
fbReceiveTON : TON;

fbDisconnectTON : TON;

cbReceived, startPos, endPos, idx : UDINT;

cbFrame : UDINT;

rxBuffer 5 ARRAY[O..MAX_PLCPRJ_RXBUFFER_SIZE] OF BYTE;
END VAR

Implementation

RisingEdge (CLK := bExecute);
CASE eStep OF

DATAEXCHA STATE IDLE:

78 Version: 1.5.1 TF6310

BECKHOFF

IF RisingEdge.Q THEN

Samples

bBusy := TRUE;
bError := FALSE;
nErrId := 0;
fbDisconnectTON(IN := FALSE, PT := T#0s); (* disable timeout check first *)
fbReceiveTON(IN := FALSE, PT := T#0s); (* receive first request immediately *)
eStep := DATAEXCHA STATE RECEIVE_ START;

END IF

DATAEXCHA STATE_RECEIVE_START: (* Receive remote client data *)

fbReceiveTON(IN := TRUE) ;
IF fbReceiveTON.Q THEN
fbReceiveTON(IN := FALSE);
fbSocketReceive (bExecute := FALSE);
fbSocketReceive (hSocket := hSocket,
pDest := ADR(rxBuffer) + cbReceived,
cbLen := SIZEOF(rxBuffer) - cbReceived,
bExecute := TRUE);
eStep := DATAEXCHA STATE RECEIVE WAIT;
END IF

DATAEXCHA STATE RECEIVE WAIT:
fbSocketReceive (bExecute := FALSE);
IF NOT fbSocketReceive.bBusy THEN
IF NOT fbSocketReceive.bError THEN

IF (fbSocketReceive.nRecBytes > 0) THEN (* bytes received *)

startPos := cbReceived; (* rxBuffer array index of first data byte *)
endPos := cbReceived + fbSocketReceive.nRecBytes - 1;
(* rxBuffer array index of last data byte *)
cbReceived

cbReceived + fbSocketReceive.nRecBytes;
(* calculate the number of received data bytes *)

cbFrame := 0; (* reset frame length *)
IF cbReceived < SIZEOF(sFromClient) THEN(* no overflow *)

fbReceiveTON(IN := FALSE, PT := T#0s); (* bytes received => increase the r

ead (polling) speed ¥*)

fbDisconnectTON(IN := FALSE, PT := PLCPRJ RECEIVE TIMEOUT) ;
(* bytes received => disable timeout check *)

(* search for string end delimiter *)

FOR idx := startPos TO endPos BY 1 DO
IF rxBuffer[idx] = 0 THEN(* string end delimiter found *)
cbFrame := idx + 1;

(* calculate the length of the received string (inclusive the end delimiter) *)

MEMCPY (ADR(sFromClient), ADR(rxBuffer), cbFrame);
(* copy the received string to the output variable (inclusive the end delimiter) *)

MEMMOVE (ADR(rxBuffer), ADR(rxBuffer[cbFrame]), cbReceived -
cbFrame); (* move the reamaining data bytes *)

cbReceived := cbReceived - cbFrame;
(* recalculate the reamaining data byte length *)
eStep := DATAEXCHA STATE SEND_ START;
EXIT;
END IF
END_FOR

ELSE (* there is no more free read buffer space => the answer string should be te
rminated *)

LogError('FB SocketReceive (remote client)', PLCPRJ ERROR RECEIVE BUFFER OV

ERFLOW) ;
nErrId := PLCPRJ ERROR RECEIVE BUFFER OVERFLOW; (* buffer overflow)
eStep := DATAEXCHA STATE ERROR;
END IF
ELSE (* no bytes received *)
fbReceiveTON(IN := FALSE, PT := PLCPRJ RECEIVE POLLING TIME) ;
(* no bytes received => decrease the read (polling) speed *)
fbDisconnectTON(IN := TRUE, PT := PLCPRJ RECEIVE TIMEOUT);

(* no bytes received => enable timeout check*)
IF fbDisconnectTON.Q THEN (* timeout error¥*)

fbDisconnectTON(IN := FALSE);
LogError('FB SocketReceive (remote client)', PLCPRJ ERROR RECEIVE TI
MEOUT) ;
nErrID := PLCPRJ ERROR RECEIVE TIMEOUT;
eStep := DATAEXCHA STATE ERROR;
ELSE (* repeat reading *)
eStep := DATAEXCHA STATE RECEIVE_START; (* repeat reading *)
END IF

TF6310 Version: 1.5.1 79

Samples BEGKHOFF

END IF
ELSE (* receive error ¥*)
LogError('FB SocketReceive (remote client)', fbSocketReceive.nErrId);
nErrId := fbSocketReceive.nErrId;
eStep := DATAEXCHA STATE ERROR;
END IF

END IF

DATAEXCHA STATE SEND START:

fbSocketSend (bExecute := FALSE);
fbSocketSend (hSocket := hSocket,
pSrc := ADR(sFromClient),
cblLen := LEN(sFromClient) + 1,

(* string length inclusive the zero delimiter *)
bExecute:= TRUE) ;
eStep := DATAEXCHA STATE_ SEND WAIT;

DATAEXCHA STATE SEND WAIT:
fbSocketSend (bExecute := FALSE);
IF NOT fbSocketSend.bBusy THEN
IF NOT fbSocketSend.bError THEN

bBusy := FALSE;
eStep := DATAEXCHA STATE IDLE;
ELSE
LogError ('fbSocketSend (remote client)', fbSocketSend.nErrId);
nErrId := fbSocketSend.nErrId;
eStep := DATAEXCHA STATE ERROR;
END IF

END IF

DATAEXCHA STATE ERROR:
bBusy := FALSE;

bError := TRUE;
cbReceived := 0; (* reset old received data bytes *)
eStep := DATAEXCHA STATE IDLE;
END_CASE
6.1.1.5 .NET client

This sample project shows how a client for the PLC TCP/IP server can be realized under .NET4.0 in C#.

80 Version: 1.5.1 TF6310

BEGKHOFF Samples

i B

Host: 127.0.01 Port: |200
Enable Disable
Send to host:
Received from host:

28.06.2012 12:32:05: Hello World
28.06.2012 12:32:12: How are you doing?

Status messages:

28.06.2012 12:31:57: Connectection to host established!
28.06 2012 12:32:04: Message successfully sent!
28.06.2012 12:32:11: Message successfully sent!

The sample uses the .NET libraries System.Net and System.Net.Sockets, with which a programmer can
easily use socket functions. Pressing Enable causes the application to cyclically (depending on the value of
TIMERTICK in [ms]) attempt to establish a connection to the server. If successful, a string with a maximum
length of 255 characters can be sent to the server via the Send button. This string is then accepted by the
server and sent back to the client. The connection is automatically closed on the server side after the
SERVER_RECEIVE_TIMEOUT time defined in the server sample has expired, default: 50 seconds, if the
server was unable to receive any new data from the client within this time.

using
using
using
using
using
using
using
using
using

/

System;
System.
System.
System.
System.
System.
System.
System.
System.

Collections.Generic;
ComponentModel;
Data;

Drawing;

Text;

Windows.Forms;

Net;

Net.Sockets;

ifddssassassadasssssaniiissaaaissasiiisasaaiissanisissaniiiasssiiasaiiissaniiisaniissssti

This sample TCP/IP client connects to a TCP/IP-Server, sends a message and waits for the

in

*
*
* response.
*
*

PLC.

It is being delivered together with our TCP-Sample, which implements an echo server

S </
namespace TcpIpServer SampleClient

{

publicpartialclassForml : Form

{
/

FORHHH A R R R R
* Constants
* O EHE AR AR AR AR R AR AR R AR R A R R R R A R R R R R R R A </

TF6310

Version: 1.5.1 81

Samples BEGKHOFF

privateconstint RCVBUFFERSIZE = 256; // buffer size for receive bufferprivateconststring DEFAULTIP =
"127.0.0.1";
privateconststring DEFAULTPORT = "200";
privateconstint TIMERTICK = 100;

/
X OHAH AR A A A A R A R R A R R

* Global variables

SO 0 i
privatestaticbool isConnected; // signals whether socket connection is active or notprivatestaticSo
cket _socket; // object used for socket connection to TCP/IP-
ServerprivatestaticIPEndPoint ipAddress; // contains IP address as entered in text fieldprivatestat
icbyte[] rcvBuffer; // receive buffer used for receiving response from TCP/IP-Serverpublic Forml ()

{

InitializeComponent () ;

}

privatevoid Forml Load(object sender, EventArgs e)

{
_rcvBuffer = newbyte[RCVBUFFERSIZE];

/
R iisdisaiisssiatissssaiisasaiisndsatianisatisadatisgiatisasatisassatisasatisaisiatistii
* Prepare GUI
FORHEA AR Y/
cmd_send.Enabled = false;
cmd _enable.Enabled = true;
cmd _disable.Enabled = false;
rtb_rcvMsg.Enabled = false;
rtb_sendMsg.Enabled = false;
rtb statMsg.Enabled = false;
txt host.Text = DEFAULTIP;
txt port.Text = DEFAULTPORT;

timerl.Enabled = false;
timerl.Interval = TIMERTICK;
_isConnected = false;

}

privatevoid cmd enable Click(object sender, EventArgs e)
{
/
* HEHER AR AR A R R R R A R R R R R R
* Parse IP address in text field, start background timer and prepare GUI
* O R R R R ~/
try
{
_1pAddress = newIPEndPoint (IPAddress.Parse (txt host.Text), Convert.ToInt32(txt port.Text));
timerl.Enabled = true;
cmd_enable.Enabled = false;
cmd_disable.Enabled = true;
rtb sendMsg.Enabled = true;
cmd_send.Enabled = true;
txt_host.Enabled = false;
txt_port.Enabled = false;
rtb sendMsg.Focus () ;
}
catch (Exception ex)

{

MessageBox.Show ("Could not parse entered IP address. Please check spelling and retry. " + ex

R E A A R R

* Timer periodically checks for connection to TCP/IP-
Server and reestablishes if not connected

* O fEHE AR AR AR AR R R A R R AR R A R R A R A R R A R R R R R R </
privatevoid timerl Tick(object sender, EventArgs e)

{

if (! isConnected)

connect () ;

}

privatevoid connect ()
{
/
SO 0
* Connect to TCP/IP-Server using the IP address specified in the text field

82 Version: 1.5.1 TF6310

BEGKHOFF Samples

R R R R R R R R R R R R R R R R R R R Y/

try
{
_socket = newSocket (AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.IP);
_socket.Connect (_ipAddress) ;
_1sConnected = true;

if (_socket.Connected)

rtb_statMsg.AppendText (DateTime.Now.ToString() + ": Connectection to host established!\n");
else

rtb statMsg.AppendText (DateTime.Now.ToString () + ": A connection to the host could not be e

stablished!\n") ;
}
catch (Exception ex)
{
MessageBox.Show ("An error occured while establishing a connection to the server: " + ex);
}
}

privatevoid cmd send Click(object sender, EventArgs e)
{
/
XORHAAR AR A R R
* Read message from text field and prepare send buffer, which is a byte[] array. The last
* character in the buffer needs to be a termination character, so that the TCP/IP-
Server knows
* when the TCP stream ends. In this case, the termination character is '0'.
o AEHE A AR AR AR AR R AR R A AR R R A AR R R AR R R A AR R R AR R A R R R AR R R A R R A </
ASCIIEncoding enc = newASCIIEncoding() ;
byte[] tempBuffer = enc.GetBytes(rtb sendMsg.Text);
byte[] sendBuffer = newbyte[tempBuffer.Length + 1];
for (int i = 0; i < tempBuffer.Length; i++)
sendBuffer[i] = tempBuffer[i];
sendBuffer[tempBuffer.Length] = 0;

/
*ORHAARAA AR R R R R R
* Send buffer content via TCP/IP connection

*OREH AR R R R R A R A R R R R R R A R R R R R R R R

try
{
int send = _socket.Send(sendBuffer);
if (send == 0)
thrownewException () ;
else
{
/

*ORAH AR R

* As the TCP/IP-
Server returns a message, receive this message and store content in receive buffer.
* When message receive is complete, show the received message in text field.
* HEEEH AR A A A A R R R R R R

rtb statMsg.AppendText (DateTime.Now.ToString() + ": Message successfully sent!\n");
IAsyncResult asynRes = socket.BeginReceive(rcvBuffer, 0, 256, SocketFlags.None, null, nul

if (asynRes.AsyncWaitHandle.WaitOne())
{
int res = _socket.EndReceive (asynRes) ;
char[] resChars = newchar[res + 1];
Decoder d = Encoding.UTF8.GetDecoder () ;
int charLength = d.GetChars(_rcvBuffer, 0, res, resChars, 0, true);
String result = newString(resChars);
rtbircvMsg.AppendText("\n" + DateTime.Now.ToString() + ": " + result);
rtb _sendMsg.Clear();
}
}
}
catch (Exception ex)
{
MessageBox.Show ("An error occured while sending the message: " + ex);
}
}

privatevoid cmd disable Click(object sender, EventArgs e)
{
/
oA R R R R R R R R R R R R R
* Disconnect from TCP/IP-Server, stop the timer and prepare GUI

*ORAH AR R R R A R R R R R R R R A R R R R R R R R R R

TF6310 Version: 1.5.1 83

Samples BEGKHOFF

timerl.Enabled = false;
__socket.Disconnect (true);
if (! socket.Connected)

{

_isConnected = false;

cmd disable.Enabled = false;

cmd_enable.Enabled = true;

txt _host.Enabled = true;

txt_port.Enabled = true;

rtb sendMsg.Enabled = false;

cmd_send.Enabled = false;

rtb statMsg.AppendText (DateTime.Now.ToString() + ": Connectection to host closed!\n");
rtb rcvMsg.Clear () ;

rtb statMsg.Clear();

6.1.2 Sample02: “Echo” client /server

This sample uses the functions of the former TcSocketHelper.Lib, which is now integrated into the
Tc2_Tcplp library. It shows a client/server PLC application based on the functions of the former
SocketHelper library.

The client cyclically sends a test string (sToServer) to the remote server. The server returns this string
unchanged to the client (sFromServer).

Solution Explorer

; Solution TwinCAT Project22' (1 project)
4[5 TwinCAT Project22

>l SYSTEM
MOTION
PLC
i) Add New Item... Ctrl+ Shift+A SAFETY
22 Add Existing Herm... Shift+Alt+A C++
Add Project from Source Control... Vo
1y Paste Ctrl+V

Paste with Links
% Import PLCopenML...

System requirements
« TwinCAT 3 Build 3093 or higher
* TwinCAT 3 Function TF6310 TCP/IP

+ If two computers are used to execute the sample (one client and one server), the Function TF6310
needs to be installed on both computers

 If one computer is used to execute the sample, e.g. client and server running in two separate PLC
runtimes, both PLC runtimes need to run in separate tasks.

Project downloads

https://github.com/Beckhoff/TF6310 Samples/tree/master/PLC/TCP/Sample02

Project information

The default communication settings used in the above samples are as follows:

* PLC client application: Port and IP address of the remote server: 200, '127.0.0.1'

84 Version: 1.5.1 TF6310

https://github.com/Beckhoff/TF6310_Samples/tree/master/PLC/TCP/Sample02

BECKHOFF Samples

» PLC server application: Port and IP address of the local server: 200, '127.0.0.1"

To test the client and server application on two different PCs, you have to adjust the port and the IP address
accordingly.

However, you can also test the client and server samples with the default values on a single computer by
loading the client application into the first PLC runtime system and the server application into the second
PLC runtime system.

The behavior of the PLC project sample is determined by the following global variables/constants.

Constant Value Description

PLCPRJ_MAX CONNECTIONS |5 Max. number of server — client connections. A server
can establish connections to more than one client. A
client can establish a connection to only one server at a
time.

PLCPRJ_SERVER_RESPONSE_ |T#10s Max. delay time (timeout time) after which a server

TIMEOUT should send a response to the client.

PLCPRJ_CLIENT_SEND_CYCLE_|T#1s Cycle time based on which a client sends send data

TIME (TX) to the server.

PLCPRJ_RECEIVER_POLLING_C |T#200ms Cycle time based on which a client or server polls for

YCLE_TIME receive data (RX).

PLCPRJ_BUFFER_SIZE 10000 Max. internal buffer size for RX/TX data.

The PLC samples define and use the following internal error codes:

Error code Value Description

PLCPRJ_ERROR_RECEIVE_BUF |16#8101 The internal receive buffer reports an overflow.
FER_OVERFLOW

PLCPRJ_ERROR_SEND_ BUFFE |16#8102 The internal send buffer reports an overflow.
R_OVERFLOW

PLCPRJ_ERROR_RESPONSE_TI |16#8103 The server has not sent the response within the
MEOUT specified timeout time.
PLCPRJ_ERROR_INVALID_FRA |16#8104 The telegram formatting is incorrect (size, faulty data
ME_FORMAT bytes etc.).

The client and server applications (FB_ServerApplication, FB_ClientApplication) were implemented as
function blocks. The application and the connection can thus be instanced repeatedly.

6.1.3 Sample03: “Echo” client/server

This sample uses the functions of the former TcSocketHelper.Lib, which is now integrated into the
Tc2_Tcplp library. It shows a client/server PLC application based on the functions of the former
SocketHelper library.

The client cyclically sends a test string (sToServer) to the remote server. The server returns this string
unchanged to the client (sFromServer). The difference between this sample and Sample02 is that the server
can establish up to five connections and the client application can start up to five client instances. Each
instance establishes a connection to the server.

TF6310 Version: 1.5.1 85

Samples BEGKHOFF

Solution Explorer

; Solution TwinCAT Project22' (1 project)
4[5 TwinCAT Project22

- | SYSTEM
MOTION
PLC
2t Add Mew Hem... Ctrl+ Shift+ 4 o SAFETY
5] Add Existing Item... Shift+Alt+A Ce+
Add Project from Source Control.., Vo
4 Paste Ctrl+V

Paste with Links

g2 Import PLCopenXML...

i

System requirements
« TwinCAT 3 Build 3093 or higher
* TwinCAT 3 Function TF6310 TCP/IP

+ If two computers are used to execute the sample (one client and one server), the Function TF6310
needs to be installed on both computers

+ If one computer is used to execute the sample, e.g. client and server running in two separate PLC
runtimes, both PLC runtimes need to run in separate tasks

Project downloads

https://github.com/Beckhoff/TF6310 Samples/tree/master/PLC/TCP/Sample03

Project information

The default communication settings used in the above samples are as follows:

» PLC client application: Port and IP address of the remote server: 200, '127.0.0.1'
» PLC server application: Port and IP address of the local server: 200, '127.0.0.1'

To test the client and server application on two different PCs, you have to adjust the port and the IP address
accordingly.

However, you can also test the client and server samples with the default values on a single computer by
loading the client application into the first PLC runtime system and the server application into the second
PLC runtime system.

The behavior of the PLC project sample is determined by the following global variables/constants.

Constant Value Description

PLCPRJ_MAX_CONNECTIONS |5 Max. number of server->client connections. A server
can establish connections to more than one client. A
client can establish a connection to only one server at a
time.

PLCPRJ_SERVER_RESPONSE_ |T#10s Max. delay time (timeout time) after which a server

TIMEOUT should send a response to the client.

PLCPRJ_CLIENT_SEND_CYCLE_|T#1s Cycle time based on which a client sends send data

TIME (TX) to the server.

PLCPRJ_RECEIVER_POLLING_C |T#200ms Cycle time based on which a client or server polls for

YCLE_TIME receive data (RX).

PLCPRJ_BUFFER_SIZE 10000 Max. internal buffer size for RX/TX data.

86 Version: 1.5.1 TF6310

https://github.com/Beckhoff/TF6310_Samples/tree/master/PLC/TCP/Sample03

BEGKHOFF Samples

The PLC samples define and use the following internal error codes:

Error code Value Description

PLCPRJ_ERROR_RECEIVE_BUF |16#8101 The internal receive buffer reports an overflow.
FER_OVERFLOW

PLCPRJ_ERROR_SEND_ BUFFE [16#8102 The internal send buffer reports an overflow.
R_OVERFLOW

PLCPRJ_ERROR_RESPONSE_TI |[16#8103 The server has not sent the response within the
MEOUT specified timeout time.
PLCPRJ_ERROR_INVALID_FRA |16#8104 The telegram formatting is incorrect (size, faulty data
ME_FORMAT bytes etc.).

The client and server applications (FB_ServerApplication, FB_ClientApplication) were implemented as
function blocks. The application and the connection can thus be instanced repeatedly.

6.1.4 Sample04: Binary data exchange

This sample uses the functions of the former TcSocketHelper.Lib, which is now integrated into the
Tc2_Tceplp library. It shows a client/server PLC application based on the functions of the former
SocketHelper library.

This sample provides a client-server application for the exchange of binary data. A simple sample protocol
has been implemented for this purpose. The length of the binary data and a frame counter for the sent and
received telegrams are transferred in the protocol header.

The structure of the binary data is defined by the PLC structure ST_ApplicationBinaryData. The binary data
are appended to the header and transferred. The instances of the binary structure are called toServer,
fromServer on the client side and toClient, fromClient on the server side.

The structure declaration on the client and server sides can be adapted as required. The structure
declaration must be identical on both sides.

The maximum size of the structure must not exceed the maximum buffer size of the send/receive Fifos. The
maximum buffer size is defined by a constant.

The server functionality is implemented in the function block FB_ServerApplication and the client
functionality in the function block FB_ClientApplication.

In the standard implementation the client cyclically sends the data of the binary structure to the server and
waits for a response from the server. The server modifies some data and returns them to the client.

If you require a specific function, you must modify the function blocks FB_ServerApplication and
FB_ClientApplication accordingly.

Solution Explorer

g Solution TwinCAT Project22' (1 project)
4 [TwinCAT Project22
- | SYSTEM
MOTION
PLC

Add Mew Itemn... Ctrl+Shift+A4 3| SAFETY
Add Existing Item... Shift+Alt+A C++
o

Add Project from Source Control..,
1y Paste Ctrl+V
Paste with Links

it
£

Import PLCopenXML...

TF6310 Version: 1.5.1 87

Samples BEGKHOFF

System requirements
* TwinCAT 3 Build 3093 or higher
e TwinCAT 3 Function TF6310 TCP/IP

 If two computers are used to execute the sample (one client and one server), the Function TF6310
needs to be installed on both computers

+ If one computer is used to execute the sample, e.g. client and server running in two separate PLC
runtimes, both PLC runtimes need to run in separate tasks.

Project downloads

https://github.com/Beckhoff/TF6310 Samples/tree/master/PLC/TCP/Sample04

Project information

The default communication settings used in the above samples are as follows:
» PLC client application: Port and IP address of the remote server: 200, '127.0.0.1'
» PLC server application: Port and IP address of the local server: 200, '127.0.0.1"

To test the client and server application on two different PCs, you have to adjust the port and the IP address
accordingly.

However, you can also test the client and server samples with the default values on a single computer by
loading the client application into the first PLC runtime system and the server application into the second
PLC runtime system.

The behavior of the PLC project sample is determined by the following global variables/constants.

Constant Value Description

PLCPRJ_MAX CONNECTIONS |5 Max. number of server->client connections. A server
can establish connections to more than one client. A
client can establish a connection to only one server at a
time.

PLCPRJ_SERVER RESPONSE_ |T#10s Max. delay time (timeout time) after which a server

TIMEOUT should send a response to the client.

PLCPRJ_CLIENT_SEND_CYCLE_|T#1s Cycle time based on which a client sends send data

TIME (TX) to the server.

PLCPRJ_RECEIVER_POLLING_C T#200ms Cycle time based on which a client or server polls for

YCLE_TIME receive data (RX).

PLCPRJ_BUFFER_SIZE 10000 Max. internal buffer size for RX/TX data.

The PLC samples define and use the following internal error codes:

Error code Value Description

PLCPRJ_ERROR_RECEIVE_BUF [16#8101 The internal receive buffer reports an overflow.
FER_OVERFLOW

PLCPRJ_ERROR_SEND BUFFE |16#8102 The internal send buffer reports an overflow.
R_OVERFLOW

PLCPRJ_ERROR_RESPONSE_TI |16#8103 The server has not sent the response within the
MEOUT specified timeout time.
PLCPRJ_ERROR_INVALID_FRA |16#8104 The telegram formatting is incorrect (size, faulty data
ME_FORMAT bytes etc.).

The client and server applications (FB_ServerApplication, FB_ClientApplication) were implemented as
function blocks. The application and the connection can thus be instanced repeatedly.

88 Version: 1.5.1 TF6310

https://github.com/Beckhoff/TF6310_Samples/tree/master/PLC/TCP/Sample04

BEGKHOFF Samples

6.1.5 Sample05: Binary data exchange

This sample uses the functions of the former TcSocketHelper.Lib, which is now integrated into the
Tc2_Tceplp library. It shows a client/server PLC application based on the functions of the former
SocketHelper library.

This sample provides a client-server application for the exchange of binary data. A simple sample protocol
has been implemented for this purpose. The length of the binary data and a frame counter for the sent and
received telegrams are transferred in the protocol header.

The structure of the binary data is defined by the PLC structure ST_ApplicationBinaryData. The binary data
are appended to the header and transferred. The instances of the binary structure are called toServer,
fromServer on the client side and toClient, fromClient on the server side.

The structure declaration on the client and server sides can be adapted as required. The structure
declaration must be identical on both sides.

The maximum size of the structure must not exceed the maximum buffer size of the send/receive Fifos. The
maximum buffer size is defined by a constant.

The server functionality is implemented in the function block FB_ServerApplication and the client
functionality in the function block FB_ClientApplication.

In the standard implementation the client cyclically sends the data of the binary structure to the server and
waits for a response from the server. The server modifies some data and returns them to the client.

If you require a specific function, you must modify the function blocks FB_ServerApplication and
FB_ClientApplication accordingly.

The difference between this sample and Sample04 is that the server can establish up to 5 connections and
the client application can have up to five client instances. Each instance establishes a connection to the
server.

Solution Explorer

; Solution TwinCAT Project22' (1 project)
4[5 TwinCAT Project22
- | SYSTEM
MOTION
PLC

Add Mew Item... Ctrl+Shift+4 | SAFETY
Add Existing Item... Shift+Alt+A C++
o

Add Project from Source Control...

1y Paste Ctrl+V
Paste with Links

% Import PLCopenXML...

System requirements
« TwinCAT 3 Build 3093 or higher
* TwinCAT 3 Function TF6310 TCP/IP

+ If two computers are used to execute the sample (one client and one server), the Function TF6310
needs to be installed on both computers

 If one computer is used to execute the sample, e.g. client and server running in two separate PLC
runtimes, both PLC runtimes need to run in separate tasks.

Project downloads

https://github.com/Beckhoff/TF6310 Samples/tree/master/PLC/TCP/Sample05

TF6310 Version: 1.5.1 89

https://github.com/Beckhoff/TF6310_Samples/tree/master/PLC/TCP/Sample05

Samples BEGKHOFF

Project information

The default communication settings used in the above samples are as follows:

» PLC client application: Port and IP address of the remote server: 200, '127.0.0.1'
» PLC server application: Port and IP address of the local server: 200, '127.0.0.1'

To test the client and server application on two different PCs, you have to adjust the port and the IP address
accordingly.

However, you can also test the client and server samples with the default values on a single computer by
loading the client application into the first PLC runtime system and the server application into the second
PLC runtime system.

The behavior of the PLC project sample is determined by the following global variables/constants.

Constant Value Description

PLCPRJ_MAX CONNECTIONS |5 Max. number of server->client connections. A server can
establish connections to more than one client. A client
can establish a connection to only one server at a time.

PLCPRJ_SERVER_RESPONSE_ |T#10s Max. delay time (timeout time) after which a server
TIMEOUT should send a response to the client.
PLCPRJ_CLIENT_SEND_CYCLE_|T#1s Cycle time based on which a client sends send data (TX)
TIME to the server.

PLCPRJ_RECEIVER_POLLING_C T#200ms Cycle time based on which a client or server polls for
YCLE_TIME receive data (RX).

PLCPRJ_BUFFER_SIZE 10000 Max. internal buffer size for RX/TX data.

The PLC samples define and use the following internal error codes:

Error code Value Description

PLCPRJ_ERROR_RECEIVE_BUF |16#8101 The internal receive buffer reports an overflow.
FER_OVERFLOW

PLCPRJ_ERROR_SEND BUFFE |16#8102 The internal send buffer reports an overflow.
R_OVERFLOW

PLCPRJ_ERROR_RESPONSE_TI |[16#8103 The server has not sent the response within the specified

MEOUT timeout time.
PLCPRJ_ERROR_INVALID_FRA |16#8104 The telegram formatting is incorrect (size, faulty data
ME_FORMAT bytes etc.).

The client and server applications (FB_ServerApplication, FB_ClientApplication) were implemented as
function blocks. The application and the connection can thus be instanced repeatedly.

6.1.6 Sample06: "Echo" client/server with TLS (basic modules)

The following sample is essentially based on Sample01 and shows an exemplary implementation of an
"Echo" client/server system. The client sends a test string to the server at certain intervals (e.g. every
second). The remote server sends this string back to the client.

In contrast to Sample01, the communication connection in this sample is secured via TLS with client/server
certificates. The certificates are not part of the sample and must be created by the user.

In essence, this sample thus illustrates the use of the function blocks FB TlsSocketConnect [P 38],
FB TlsSocketCreate [P 41], FB TlsSocketListen [P 40], FB TIsSocketAddCa [P 42], FB TIsSocketAddCrl [P 43],

and FB TlsSocketSetCert [P 44]. These were integrated accordingly into the state machine of the client and
server sample from Sample01.

Project downloads

https://github.com/Beckhoff/TF6310 Samples/tree/master/PLC/TCP/Sample06

90 Version: 1.5.1 TF6310

https://github.com/Beckhoff/TF6310_Samples/tree/master/PLC/TCP/Sample06

BEGKHOFF Samples

6.1.7 Sample07: "Echo" client/server with TLS-PSK (basic
modules)

The following sample is essentially based on Sample01 and shows an exemplary implementation of an
"Echo" client/server system. The client sends a test string to the server at certain intervals (e.g. every
second). The remote server sends this string back to the client.

In contrast to Sample01, the communication connection in this sample is secured via TLS with a pre-shared
key (PSK).

In essence, this sample thus illustrates the use of the function blocks FB TlsSocketConnect [P 38],

FB TlsSocketCreate [P 41], FB TlsSocketListen [P 40], and FB TlsSocketSetPsk [» 45]. These were integrated
accordingly into the state machine of the client and server sample from Sample01.

Project downloads

https://github.com/Beckhoff/TF6310 Samples/tree/master/PLC/TCP/Sample07

6.2 UDP

6.2.1 Sample01: Peer-to-peer communication

6.2.1.1 Overview

The following example demonstrates the implementation of a simple Peer-to-Peer application in the PLC and
consists of two PLC projects (PeerA and PeerB) plus a .NET application which also acts as a separate peer.
All peer applications send a test string to a remote peer and at the same time receive strings from a remote
peer. The received strings are displayed in a message box on the monitor of the target computer. Feel free
to use and customize this sample to your needs.

System requirements
» TwinCAT 3 Build 3093 or higher
« TwinCAT 3 Function TF6310 TCP/IP

« If two computers are used to execute the sample, the Function TF6310 needs to be installed on both
computers

+ If one computer is used to execute the sample, e.g. Peer A und Peer B running in two separate PLC
runtimes, both PLC runtimes need to run in separate tasks

* To run the .NET sample client, only .NET Framework 4.0 is needed
Project downloads

The sources of the two PLC devices only differ in terms of different IP addresses of the remote
communication partners.

https://github.com/Beckhoff/TF6310 Samples/tree/master/PLC/UDP/Sample01

https://github.com/Beckhoff/TF6310 Samples/tree/master/C%23/SampleClientUdp

Project description

The following links provide documentation for each component. Additionally, an own article explains how to
start the PLC samples with step-by-step instructions.

* Integration in TwinCAT and Test [>_93] (Starting the PLC samples)
+ PLC devices A and B [» 94] (Peer-to-Peer PLC application)
» .NET communication [P 97] (.NET sample client)

TF6310 Version: 1.5.1 91

https://github.com/Beckhoff/TF6310_Samples/tree/master/PLC/TCP/Sample07
https://github.com/Beckhoff/TF6310_Samples/tree/master/PLC/UDP/Sample01
https://github.com/Beckhoff/TF6310_Samples/tree/master/C%23/SampleClientUdp

Samples BEGKHOFF

Additional functions of the PLC sample projects

Some functions, constants and function blocks are used in the PLC samples, which are briefly described
below:

Fifo function block

FUNCTION BLOCK FB Fifo
VAR _INPUT

new : ST FifoEntry;
END VAR
VAR OUTPUT

bOk : BOOL;

old : ST FifoEntry;
END VAR

This is a simple Fifo function block. One instance of this function block is used as "send Fifo", another one as
"receive Fifo". The messages to be sent are stored in the send Fifo, the received messages are stored in the
receive Fifo. The bOk output variable is set to FALSE if errors occurred during the last action (AddTail or
RemoveHead) (Fifo empty or overfilled).

A Fifo entry consists of the following components:

TYPE STiFifoEntry 8
STRUCT
sRemoteHost : STRING(1l5); (* Remote address. String containing an (Ipv4) Internet Protocol dotte
d address. *)
nRemotePort : UDINT; (* Remote Internet Protocol (IP) port. *)
msg : STRING; (* Udp packet data *)
END_ STRUCT
END TYPE

LogError function

FUNCTION LogError : DINT

LOGERROR

—msgy STRIMGE0) LogErrar: DINT—
—nErtld . DWWORD

The function writes a message with the error code into the logbook of the operating system (Event Viewer).
The global variable bLogDebugMessages must first be set to TRUE.

LogMessage function

FUNCTION LogMessage : DINT

LOGMESSAGE

—msg : STRIMNGE0) Logmessage : DIMNTH—
—{hSocket: T_HSOCKET

The function writes a message into the logbook of the operating system (Event Viewer) if a new socket was
opened or closed. The global variable bLogDebugMessages must first be set to TRUE.

SCODE_CODE function

FUNCTION SCODE CODE : DWORD

SCODE_CODE

— 56 UDINT SCODE_CODE : DWORDN—

The function masks the least significant 16 bits of a Win32 error code returns them.

92 Version: 1.5.1 TF6310

BEGKHOFF Samples

6.2.1.2 Integration in TwinCAT and Test

The PLC samples are provided as TwinCAT 3 PLC project files. To import a PLC project into TwinCAT XAE,
first create a new TwinCAT 3 Solution. Then select the Add Existing Item command in the context menu of
the PLC node and select the downloaded sample file (Plc 3.x Project archive (*.tpzip)) as the file type in the

dialog that opens. After confirming the dialog, the PLC project is added to the Solution.

Solution Explorer

; Solution TwinCAT Project22' (1 project)
4[5 TwinCAT Project22

> @l SYSTEM
MOTION
PLC
- Add New fem... Ctrl+Shift+A SAFETY
i Add Existing Item... Shift+Alt+ A C++
Add Project from Source Control... Vo
1h Paste Ctrl+Y

Paste with Links

g Import PLCopenXML...

i

Two computers are required to start the sample. Alternatively, the test may be carried out with two runtime
systems on a single PC. The constants with the port numbers and the IP addresses of the communication
partners have to be modified accordingly.
Sample configuration with two computers:

* Device A is located on the local PC and has the IP address '10.1.128.21"

» Device B is located on the remote PC and has the IP address '172.16.6.195'".

Device A

Please perform the following steps to configure the sample on device A:

* Create a new TwinCAT 3 solution in TwinCAT XAE and import the Peer-to-Peer PLC project for device
A.

» Set the constant REMOTE_HOST _IP in POU MAIN to the real IP address of the remote system
(device B - in our example: '10.1.128.").

+ Activate the configuration and start the PLC runtime. (Don't forget to create a license for TF6310 TCP/
IP)

Device B

To install the sample on device B, proceed as follows:

* Create a new TwinCAT 3 Solution in TwinCAT XAE and import the peer-to-peer PLC project for device
B.

» Adapt the constant REMOTE_HOST _IP in POU MAIN to the actual IP address of device A (in our
sample '10.1.128.21").

« Enable the configuration and start the PLC runtime. (Do not forget to generate a license for TF6310
TCP/IP beforehand)

* Log in to the PLC runtime and set the Boolean variable bSendOnceToRemote to TRUE in the POU
"MAIN".

* A message box should appear on device A shortly afterwards. You can now repeat this step on device
A. The message box should now appear on device B.

TF6310 Version: 1.5.1 93

Samples

BECKHOFF

e -

TwinCAT_Projectl7.PeerToPeerA.MAIN

Expression Type Value Prepared value Comment
@ LOCAL_HOST_IP STRING(15)
@ LOCAL_HOST_PORT UDINT 1001
REMOTE_HOST_IP STRING(15) 3.1.123.30' e e =)
@ REMOTE_HOST_PORT UDINT G 1o

+ @ fbSocketCloseal FB_SocketCloseall N
bCloseal BO0L FALSE) RECEIVED from: 10.1.128 30, Port: 1001, msg: Hello rermote host!

+ @ fbPeerToPeer FE_PeerToPeer

+ @ sendFifo FB_Fifo

+ @ receiveFifo FB_Fifo 0K

+ @ sendToEntry ST_FifoEntry

+ @ entryReceivedFrom ST_FifoEntry . ’
@ tmp STRING 'RECEIVED from: 10.1.128.30, Port: 1001, msg: %s’
@ bSendOnceToltself BOOL FALSE
@ bSendOnceToRemote BOOL FALSE

6.2.1.3 PLC devices A and B

The required functionality was encapsulated in the function block FB_PeerToPeer. Each of the
communication partners uses an instance of the FB_PeerToPeer function block. The block is activated
through a rising edge at the bEnable input. A new UDP socket is opened, and data exchange commences.
The socket address is specified via the variables sLocalHost and nLocalPort. A falling edge stops the data
exchange and closes the socket. The data to be sent are transferred to the block through a reference
(VAR_IN_OUT) via the variable sendFifo. The data received are stored in the variable receiveFifo.

Name

Default value Description

g_sTclpConnSvrAddr

" Network address of the TwinCAT TCP/IP Connection

Server. Default: Empty string (the server is located on

RFLOW

the local PC);
bLogDebugMessages TRUE Activates/deactivates writing of messages into the log
book of the operating system;
PLCPRJ_ERROR_SENDFIFO_OV |16#8103 Sample project error code: The send Fifo is full.
ERFLOW
PLCPRJ_ERROR_RECFIFO_OVE |16#8104 Sample project error code: The receive Fifo is full.

FUNCTION_BLOCK FB_PeerToPeer

FB_FPeerToPeer

—sLocalHost hCreated
—nLocalPort hBuUsy
—hEnahle hError
—sendFifo hErtld

receiveFifo &

Interface

VAR IN OUT
sendFifo : FB_Fifo;
receiveFifo : FB Fifo;

END VAR

VAR INPUT
sLocalHost : STRING(15);
nLocalPort : UDINT;
bEnable : BOOL;

END VAR

VAR OUTPUT
bCreated : BOOL;
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;

END VAR

VAR
fbCreate : FB_SocketUdpCreate;

94

Version: 1.5.1

TF6310

BECKHOFF

Samples

fbClose : FB SocketClose;
fbReceiveFrom : FB SocketUdpReceiveFrom;
fbSendTo : FB_SocketUdpSendTo;
hSocket : T HSOCKET;

eStep : E ClientServerSteps;
sendTo : ST FifoEntry;

receivedFrom : ST FifoEntry;

END_ VAR

Implementation

CASE eStep OF
UDP_STATE IDLE:

IF bEnable XOR bCreated THEN

bBusy := TRUE;
bError := FALSE;
nErrid := 0;
IF bEnable THEN

eStep := UDP_STATE CREATE START;
ELSE

eStep := UDP_STATE CLOSE_ START;
END IF

ELSIF bCreated THEN
sendFifo.RemoveHead (old => sendTo);
IF sendFifo.bOk THEN
eStep := UDP_STATE SEND_ START;
ELSE (* empty ¥*)
eStep := UDP_STATE RECEIVE START;
END IF
ELSE
bBusy := FALSE;
END IF

UDP_STATE CREATE START:

UDP_

UDP_

UDP_

UDP_

fbCreate (bExecute := FALSE);
fbCreate (sSrvNetId:= g sTcIpConnSvrAddr,
sLocalHost:= sLocalHost,

nLocalPort:= nLocalPort,
bExecute:= TRUE) ;
eStep := UDP_STATE CREATE WAIT;

STATE CREATE WAIT:
fbCreate (bExecute := FALSE);
IF NOT fbCreate.bBusy THEN
IF NOT fbCreate.bError THEN
bCreated := TRUE;
hSocket := fbCreate.hSocket;
eStep := UDP_STATE IDLE;
LogMessage ('Socket opened (UDP)!', hSocket);
ELSE
LogError ('FB_SocketUdpCreate', fbCreate.nErrId);
nErrId := fbCreate.nErrId;
eStep := UDP_STATE_ERROR;
END IF
END IF

STATE SEND_ START:
fbSendTo (bExecute := FALSE);
fbSendTo (sSrvNetId:=g sTcIpConnSvrAddr,

sRemoteHost := sendTo.sRemoteHost,

nRemotePort := sendTo.nRemotePort,

hSocket:= hSocket,

pSrc:= ADR(sendTo.msg),

cbLen:= LEN(sendTo.msg) + 1, (* include the end delimiter
bExecute:= TRUE) ;
eStep := UDP_STATE SEND WAIT;

STATE_SEND WAIT:
fbSendTo (bExecute := FALSE);
IF NOT fbSendTo.bBusy THEN

IF NOT fbSendTo.bError THEN

eStep := UDP_STATE RECEIVE_ START;
ELSE
LogError ('FB SocketSendTo (UDP)', fbSendTo.nErrId);
nErrId := fbSendTo.nErrId;
eStep := UDP_STATE ERROR;
END IF

END IF

STATE_RECEIVE START:

*)

TF6310

Version: 1.5.1

95

Samples BEGKHOFF

MEMSET (ADR(receivedFrom), 0, SIZEOF(receivedFrom));
fbReceiveFrom(bExecute := FALSE);
fbReceiveFrom(sSrvNetId:=g sTcIpConnSvrAddr,
hSocket:= hSocket,
pDest:= ADR(receivedFrom.msg),

cblLen:= SIZEOF (receivedFrom.msg) - 1, (*without string delimiter ¥*)
bExecute:= TRUE) ;
eStep := UDP_STATE RECEIVE WAIT;

UDP_STATE RECEIVE WAIT:
fbReceiveFrom(bExecute := FALSE);
IF NOT fbReceiveFrom.bBusy THEN
IF NOT fbReceiveFrom.bError THEN
IF fbReceiveFrom.nRecBytes > 0 THEN

receivedFrom.nRemotePort := fbReceiveFrom.nRemotePort;
receivedFrom. sRemoteHost fbReceiveFrom.sRemoteHost;
receiveFifo.AddTail (new := receivedFrom);
IF NOT receiveFifo.bOk THEN (* Check for fifo overflow *)
LogError('Receive fifo overflow!', PLCPRJ ERROR RECFIFO OVERFLOW) ;

END IF
END IF
eStep := UDP_STATE IDLE;

ELSIF fbReceiveFrom.nErrId = 16#80072746 THEN
LogError ('The connection is reset by remote side.', fbReceiveFrom.nErrId);

eStep := UDP_STATE IDLE;
ELSE
LogError ('FB SocketUdpReceiveFrom (UDP client/server)', fbReceiveFrom.nErrId);
nErrId := fbReceiveFrom.nErrId;
eStep := UDP_STATE ERROR;
END IF

END IF

UDP STATE CLOSE START:
fbClose (bExecute := FALSE);
fbClose (sSrvNetId:= g sTcIpConnSvrAddr,
hSocket:= hSocket,
bExecute:= TRUE) ;
eStep := UDP STATE CLOSE WAIT;

UDP_STATE CLOSE_WAIT:
fbClose (bExecute := FALSE);
IF NOT fbClose.bBusy THEN
LogMessage ('Socket closed (UDP)!', hSocket);
bCreated := FALSE;
MEMSET (ADR (hSocket), 0, SIZEOF (hSocket));
IF fbClose.bError THEN
LogError ('FB SocketClose (UDP)', fbClose.nErrId);

nErrId := fbClose.nErrId;

eStep := UDP_STATE ERROR;

ELSE
bBusy := FALSE;
bError := FALSE;
nErrId := 0;
eStep := UDP_STATE IDLE;

END IF

END IF

UDP_STATE_ERROR: (* Error step *)

bError := TRUE;
IF bCreated THEN
eStep := UDP_STATE CLOSE_ START;
ELSE
bBusy := FALSE;
eStep := UDP_STATE IDLE;
END IF
END_CASE

MAIN program

Previously opened sockets must be closed after a program download or a PLC reset. During PLC start-up,
this is done by calling an instance of the FB_SocketCloseAll [» 25] function block. If one of the variables
bSendOnceToltself or bSendOnceToRemote has an rising edge, a new Fifo entry is generated and stored in
the send Fifo. Received messages are removed from the receive Fifo and displayed in a message box.
PROGRAM MAIN

VAR CONSTANT

LOCAL HOST IP : STRING (15) s= 00
LOCAL_HOST PORT : UDINT := 1001;

96 Version: 1.5.1 TF6310

BEGKHOFF Samples

REMOTE HOST IP : STRING (15) = '172.16.2.209";
REMOTE HOST_PORT : UDINT := 1001;
END_ VAR
VAR
fbSocketCloseAll : FB_SocketCloseAll;
bCloseAll : BOOL := TRUE;
fbPeerToPeer : FB PeerToPeer;
sendFifo : FB Fifo;
receiveFifo : FB Fifo;
sendToEntry : ST FifoEntry;
entryReceivedFrom : ST FifoEntry;
tmp : STRING;

bSendOnceToItself : BOOL;
bSendOnceToRemote : BOOL;
END VAR

IF bCloseAll THEN (*On PLC reset or program download close all old connections *)
bCloseAll := FALSE;

fbSocketCloseAll (sSrvNetId:= g sTcIpConnSvrAddr, bExecute:= TRUE, tTimeout:= T#10s);
ELSE

fbSocketCloseAll (bExecute:= FALSE) ;
END IF

IF NOT fbSocketCloseAll.bBusy AND NOT fbSocketCloseAll.bError THEN

IF bSendOnceToRemote THEN

bSendOnceToRemote := FALSE; (* clear flag *)
sendToEntry.nRemotePort := REMOTE HOST PORT; (* remote host port number*)
sendToEntry.sRemoteHost := REMOTE HOST IP; (* remote host IP address *)
sendToEntry.msg := 'Hello remote host!'; (* message text¥*);
sendFifo.AddTail (new := sendToEntry); (* add new entry to the send queue*)
IF NOT sendFifo.bOk THEN (* check for fifo overflow*)
LogError ('Send fifo overflow!', PLCPRJ ERROR SENDFIFO OVERFLOW) ;
END IF
END IF
IF bSendOnceToltself THEN
bSendOnceToItself := FALSE; (* clear flag *)
sendToEntry.nRemotePort := LOCAL_ HOST_PORT; (* nRemotePort == nLocalPort => sen
d it to itself *)
sendToEntry.sRemoteHost := LOCAL HOST IP; (* sRemoteHost == sLocalHost =>
send it to itself *)
sendToEntry.msg := 'Hello itself!'; (* message text*);
sendFifo.AddTail (new := sendToEntry); (* add new entry to the send queue*)
IF NOT sendFifo.bOk THEN (* check for fifo overflow*)
LogError('Send fifo overflow!', PLCPRJ ERROR SENDFIFO OVERFLOW) ;
END IF
END IF
(* send and receive messages ¥*)
fbPeerToPeer (sendFifo := sendFifo, receiveFifo := receiveFifo, sLocalHost := LOCAL HOST IP, nLocal
Port := LOCAL HOST PORT, bEnable := TRUE);

(* remove all received messages from receive queue ¥*)
REPEAT
receiveFifo.RemoveHead (old => entryReceivedFrom);
IF receiveFifo.bOk THEN

tmp := CONCAT('RECEIVED from: ', entryReceivedFrom.sRemoteHost);
tmp := CONCAT(tmp, ', Port: ');
tmp := CONCAT (tmp, UDINT_ TO_ STRING (entryReceivedFrom.nRemotePort));
tmp := CONCAT(tmp, ', msg: %s');
ADSLOGSTR (ADSLOG MSGTYPE HINT OR ADSLOG MSGTYPE MSGBOX, tmp, entryReceivedFrom.msg);
END IF
UNTIL NOT receiveFifo.bOk
END REPEAT
END IF
6.21.4 .NET communication

This sample demonstrates how a suitable .NET communication partner for the PLC peer-to-peer device A
can be realized. Only use this sample in conjunction with the PLC project PeerToPeerA.

TF6310 Version: 1.5.1 97

Samples BEGKHOFF

TwinCAT_Project9.PeerToPeerA.MAIN

Expression Type Walue Prepared value
@ LOCAL_HOST_IP STRING{15) '10.1.128.21" B i | = 53 |1I
@ LOCAL HOST PORT UDINT [C JRULH is Tiisalel —
& REMOTE_HOST_IP STRING(15) 10.t12821 |
REMOTE HOST PORT UDINT @ 1002 28.06. 2012 17:17-40: Hello remote host!

+ @ fbSocketCloseal FB_SocketCloseal
@ bCloseall BOOL FALSE

+ @ fbPeerToPeer FB_PeerToPeer

* % sendfifo Fe_Fifa Host: 127.0.0.1 Pot: 1001

+ & receiveFifo FB_Fif

+ & sendToEntry ST_FifoEntry Message: Send

+ & entryReceivedFrom ST_FifaEntry
& tmp STRING " . o
bSendOnceToltself BOOL
@ bSendOnceToRemote BOOL FALSE

The .NET Sample Client can be used to send single UPD data packages to a UPD Server, in this case the
PLC project PeerToPeerA.

Download
Download the test client.

Unpack the ZIP file; the .exe file runs on a Windows system.

How it works

The sample uses the .Net libraries System.Net and System.Net.Sockets to implement a UDP client (class
UdpClient). While listening for incoming UDP packets in a background thread, a string can be sentto a
remote device by specifying its IP address and port number and clicking the Send button.

For a better understanding of this article, imagine the following setup:

» The PLC project Peer-to-Peer device A is running on a computer with IP address 10.1.128.21
« The .NET application is running on a computer with IP address 10.1.128.30
Description

The client itself uses port 11000 for sending. At the same time it opens this port and displays received
messages in the upper part of the interface as a log:

I)

al UDP Sample Client (=@ =]

13.04 2015 11:59:34: Beckhoff TCP-UDP RT
13.04 2015 11:59:35: Beckhoff TCP-UDP RT
13.04 2015 11:59:35: Beckhoff TCP-UDP RT
13.04. 2015 11:59:35: Beckhoff TCP-UDP RT

(=]

Destination: 172.17.36.158 Port: 10000
Source: 1721721555 -
Message: Beckhoff TCP-UDF RT Send

Hirt: Client sends./receives on udp port: 11000

Together with the PLC / C++ samples, this results in an echo sample:
A UDP message is sent from the client port 11000 to the server port 10000, which sends the same data back
to the sender.

98 Version: 1.5.1 TF6310

http://download.beckhoff.com/download/Software/TwinCAT/TwinCAT3/Samples/TF6311-TCPUDPRT/Sample02-UdpDemo/TF631x-SampleClientUdp.zip

BEGKHOFF Samples

The client can be configured via the interface:
+ Destination: Destination IP address
» Port: The port that is addressed in the target

» Source: Sender network card (IP address).
"OS-based" operating system deals with selection of the appropriate network card.

* Message

The TF6311 "TCP/UDP Realtime" does not allow local communication. However, for testing purposes a
different network interface can be selected via "Source", so that the UDP packet leaves the computer
through one network card and arrives on the other network card ("loop cable").

6.2.2 Sample02: Multicast

This sample demonstrates how to send and receive Multicast packages via UDP.
Client and Server cyclically send a value to each other via a Multicast IP address.
Client and Server are realized by two PLC applications and delivered within a single TwinCAT 3 solution.
System requirements
» TwinCAT 3 Build 3093 or higher
» TwinCAT 3 Function TF6310 TCP/IP version 1.0.64 or higher

e TwinCAT 3 Library Tc2_Tcplp version 3.2.64.0 or higher

 If one computer is used to execute the sample, e.g. client and server running in two separate PLC
runtimes, both PLC runtimes need to run in separate tasks.

Project download

https://github.com/Beckhoff/TF6310 Samples/tree/master/PLC/UDP/Sample02

TF6310 Version: 1.5.1 99

https://github.com/Beckhoff/TF6310_Samples/tree/master/PLC/UDP/Sample02

Appendix BEGKHOFF

7 Appendix

71 OSI| model

The following article contains a brief introduction to the OSI model and describes how it influences our
everyday network communication. Please note that this article is not intended to supersede more detailed
documentation on the subject, but only to provide an overview.

The OSI (Open Systems Interconnection) model describes the standardization of functions in a
communication system via an abstract layer model. Each layer describes certain functions of communication
between devices in the network. Each layer only communicates with the layer directly above or below it.

OSI model
Layer Mame Example protocols
7 Application Layer HTTP, FTP, DNS, SNMP, Telnet
(1] Presentation Layer 551, TLS
5 Session Layer MetBIOs, PRPTP
4 Transport Layer TCP, UDP
3 Network Layer IF, ARP, ICMP, IPSec
2 Data Link Layer PPP, ATM, Ethernet
1 Physical Layer Ethernet, USB, Bluetooth, IEEES02.11

Sample: If you call up the address "http://www.beckhoff.com" with your web browser, the following protocols
are used, starting from layer 7: HTTP — TCP — IP — Ethernet. If you enter "https://www.beckhoff.com",
however, the protocols HTTP — SSL — TCP — IP — Ethernet would be used.

The TwinCAT 3 function TF6310 TCP/IP can be used to develop network-capable PLC programs that use
TCP or UDP as the transport protocol. This allows PLC programmers to implement their own network
protocols in the application layer and define their own message structure for communication with remote
systems.

7.2 KeepAlive configuration

The transmission of TCP KeepAlive messages verifies if an idle TCP connection is still active. Since version
1.0.47 of the TwinCAT TCP/IP Server (TF6310), the KeepAlive configuration of the Windows operating
system is used, which can be configured via the following registry keys:

The following documentation is an excerpt of a Microsoft Technet article.

KeepAliveTime
HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters

Data type Range Default value

REG_DWORD 0x1-0xFFFFFFFF (milliseconds) |0x6DDDO0O0 (7,200,000
milliseconds = 2 hours)

Description

Determines how often TCP sends keep-alive transmissions. TCP sends keep-alive transmissions to verify
that an idle connection is still active.This entry is used when the remote system is responding to TCP.
Otherwise, the interval between transmissions is determined by the value of the KeepAlivelnterval entry. By
default, keep-alive transmissions are not sent. The TCP keep-alive feature must be enabled by a program,
such as Telnet, or by an Internet browser, such as Internet Explorer.

100 Version: 1.5.1 TF6310

http://technet.microsoft.com/en-us/library/cc957549.aspx
http://technet.microsoft.com/en-us/library/cc957548.aspx

BECKHOFF

Appendix

KeepAlivelnterval

HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters

Data type Range Default value

REG_DWORD 0x1-0xFFFFFFFF (milliseconds) |0x3E8 (1,000 milliseconds = 1
second)

Description

Determines how often TCP repeats keep-alive transmissions when no response is received. TCP sends
keep-alive transmissions to verify that idle connections are still active. This prevents TCP from inadvertently

disconnecting active lines.

7.3

7.3.1

Error codes

Overview of the error codes

Codes (hex)

Codes (dec)

Error source

Description

0x00000000-0x00007800

0-30720

TwinCAT system error

codes [»_104

TwinCAT system error
(including ADS error
codes)

0x00008000-0x000080FF

32768-33023

Internal TwinCAT TCP/IP

Connection Server error

codes [» 102

Internal error of the
TwinCAT TCP/IP
Connection Server

0x80070000-0x8007FFFF

2147942400-2148007935

Error source = Code -
0x80070000 = Win32

system error codes

Win32 system error
(including Windows
sockets error codes)

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v3.1 PC, CX (x86) or CX (Arm®) Tc2_Tcplp
TF6310 Version: 1.5.1 101

Appendix BEGKHOFF

7.3.2 Internal error codes of the TwinCAT TCP/IP Connection
Server

102 Version: 1.5.1 TF6310

BECKHOFF Appendix
Code Code Symbolic constant Description
(hex) (dec)
0x0000800| 32769 |TCPADSERROR_NOMO |No new sockets can be created (for FB_SocketListen
1 REENTRIES and FB_SocketConnect).
0x0000800| 32770 |TCPADSERROR_NOTF |Socket handle is invalid (for FB_SocketReceive,
2 OUND FB_SocketAccept, FB_SocketSend etc.).
0x0000800| 32771 |TCPADSERROR_ALREA|Is returned when FB_SocketListen is called, if the Tcplp
3 DYEXISTS port listener already exists.
0x0000800| 32772 |TCPADSERROR_NOTC |Is returned when FB_SocketReceive is called, if the
4 ONNECTED client socket is no longer connected with the server.
0x0000800| 32773 |TCPADSERROR_NOTLI |Is returned when FB_SocketAccept is called, if an error
5 STENING was registered in the listener socket.
0x0000800| 32774 |TCPADSERROR_HOST_|Returned if the target system is not reachable.
6 NOT_FOUND
0x0000808| 32896 |TCPADSERROR_TLS_ | |Returned if FB_TIsSocketAddCa, FB_TIsSocketAddCrl
0 NVALID_STATE FB_TisSocketSetCert or FB_TlsSocketSetPsk are called
and a Connect has already been called.
0x0000808| 32897 |TCPADSERROR_TLS C |Returned if the specified CA certificate was not found.
1 A NOTFOUND
0x0000808| 32898 |TCPADSERROR_TLS C |Returned if the specified certificate file was not found.
2 ERT_NOTFOUND
0x0000808| 32899 |TCPADSERROR_TLS_K |Returned if the specified file with the private key was not
3 EY_NOTFOUND found.
0x0000808| 32900 |TCPADSERROR_TLS C |Returned if the specified CA certificate could not be read
4 A_INVALID or is invalid.
0x0000808, 32901 |TCPADSERROR _TLS C |Returned if the specified certificate file could not be read
5 ERT_INVALID or is invalid.
0x0000808| 32902 |TCPADSERROR_TLS_K |Returned if the specified private key could not be read or
6 EY_INVALID is invalid.
0x0000808| 32903 |TCPADSERROR_TLS V |Returned if the remote terminal could not be verified
7 ERIFY_FAIL during the TLS handshake.
0x0000808| 32904 |TCPADSERROR_TLS_S |Returned if a general error occurred while setting up the
8 ETUP TLS connection.
0x0000808| 32905 |TCPADSERROR_TLS_H |Returned if an error occurred during the TLS handshake.
9 ANDSHAKE_FAIL Usually the handshake always works. However, if there
are connection problems during the handshake, it may
fail.
0x0000808| 32906 |TCPADSERROR_TLS C |Returned if an invalid cipher suite was specified.
A IPHER _INVALID
0x0000808| 32907 |TCPADSERROR _TLS V |Returned if an invalid TLS version was specified.
B ERSION_INVALID
0x0000808| 32908 |TCPADSERROR_TLS C |Returned if the specified Certificate Revocation List
C RL_INVALID (CRL) is invalid.
0x0000808| 32909 |TCPADSERROR_TLS | |Returned if an internal error occurred while setting up
D NTERNAL _ERROR the TLS connection.
0x0000808| 32910 |TCPADSERROR_TLS P |Returned if an error occurred when using a
E SK_SETUP_ERROR PreSharedKey (PSK) for TLS.
0x0000808| 32911 |TCPADSERROR_TLS C |Returned if the CommonName in the certificate of the
F N_MISMATCH remote terminal does not match the host name or IP
address used.
0x0000809| 32912 |TCPADSERROR_TLS C |Returned when the certificate of the remote terminal has
0 ERT_EXPIRED expired.
0x0000809| 32913 |TCPADSERROR_TLS C |Returned when the certificate of the remote terminal has
1 ERT_REVOKED been revoked.
0x0000809| 32914 |TCPADSERROR_TLS_ C |Returned when the remote terminal did not submit a
2 ERT_MISSING certificate.
TF6310 Version: 1.5.1 103

Appendix BEGKHOFF

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v3.1 PC, CX (x86) or CX (Arm®) Tc2_Tceplp

7.3.3 Troubleshooting/diagnostics

 In the event of connection problems the PING command can be used to ascertain whether the external
communication partner can be reached via the network connection. If this is not the case, check the
network configuration and firewall settings.

 Sniffer tools such as Wireshark enable logging of the entire network communication. The log can then
be analysed by Beckhoff support staff.

* Check the hardware and software requirements described in this documentation (TwinCAT version, CE
image version etc.).

» Check the software installation hints described in this documentation (e.g. installation of CAB files on
CE plattform).

* Check the input parameters that are transferred to the function blocks (network address, port number,
data etc, connection handle.) for correctness. Check whether the function block issues an error code.

The documentation for the error codes can be found here: Overview of error codes [» 101].

» Check if the other communication partner/software/device issues an error code.

 Activate the debug output integrated in the TcSocketHelper.Lib during connection establishment/
disconnect process (keyword: CONNECT_MODE_ENABLEDBG). Open the TwinCAT System
Manager and activate the LogView window. Analyze/check the debug output strings.

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v3.1 PC, CX (x86) or CX (Arm®) Tc2_Tceplp

7.3.4 ADS Return Codes

Grouping of error codes:

Global error codes: 0x0000 [»_104]... (0x9811_0000 ...)
Router error codes: 0x500 [P_105]... (0x9811_0500 ...)
General ADS errors: 0x700 [»_105]... (0x9811_0700 ...)
RTime error codes: 0x1000 [»_107]... (0x9811_1000 ...)

Global error codes

104 Version: 1.5.1 TF6310

BEGKHOFF Appendix
Hex Dec HRESULT Name Description

0x0 0 0x98110000 |ERR_NOERROR No error.

0x1 1 0x98110001 ERR_INTERNAL Internal error.

0x2 2 0x98110002 |ERR_NORTIME No real time.

0x3 3 0x98110003 |ERR_ALLOCLOCKEDMEM Allocation locked — memory error.

0x4 4 0x98110004 |ERR_INSERTMAILBOX Mailbox full — the ADS message could not be sent.
Reducing the number of ADS messages per cycle will
help.

0x5 5 0x98110005 |ERR_WRONGRECEIVEHMSG Wrong HMSG.

0x6 6 0x98110006 ERR_TARGETPORTNOTFOUND Target port not found — ADS server is not started, not
reachable or not installed.

0x7 7 0x98110007 ERR_TARGETMACHINENOTFOUND Target computer not found — AMS route was not found.

0x8 8 0x98110008 |ERR_UNKNOWNCMDID Unknown command ID.

0x9 9 0x98110009 |ERR_BADTASKID Invalid task ID.

0xA 10 0x9811000A |ERR_NOIO No 10.

0xB 11 0x9811000B |ERR_UNKNOWNAMSCMD Unknown AMS command.

0xC 12 0x9811000C |ERR_WIN32ERROR Win32 error.

0xD 13 0x9811000D |ERR_PORTNOTCONNECTED Port not connected.

OxE 14 0x9811000E |ERR_INVALIDAMSLENGTH Invalid AMS length.

OxF 15 0x9811000F |ERR_INVALIDAMSNETID Invalid AMS Net ID.

0x10 16 0x98110010 ERR_LOWINSTLEVEL Installation level is too low —TwinCAT 2 license error.

0x11 17 0x98110011 ERR_NODEBUGINTAVAILABLE No debugging available.

0x12 18 0x98110012 ERR_PORTDISABLED Port disabled — TwinCAT system service not started.

0x13 19 0x98110013 |ERR_PORTALREADYCONNECTED Port already connected.

0x14 20 0x98110014 |ERR_AMSSYNC_W32ERROR AMS Sync Win32 error.

0x15 |21 0x98110015 |ERR_AMSSYNC_TIMEOUT AMS Sync Timeout.

0x16 22 0x98110016 |ERR_AMSSYNC_AMSERROR AMS Sync error.

0x17 23 0x98110017 ERR_AMSSYNC_NOINDEXINMAP No index map for AMS Sync available.

0x18 24 0x98110018 |ERR_INVALIDAMSPORT Invalid AMS port.

0x19 25 0x98110019 |ERR_NOMEMORY No memory.

Ox1A |26 0x9811001A |ERR_TCPSEND TCP send error.

ox1B |27 0x9811001B |ERR_HOSTUNREACHABLE Host unreachable.

0x1C |28 0x9811001C |ERR_INVALIDAMSFRAGMENT Invalid AMS fragment.

0x1D |29 0x9811001D |ERR_TLSSEND TLS send error — secure ADS connection failed.

Ox1E |30 0x9811001E |ERR_ACCESSDENIED Access denied — secure ADS access denied.

Router error codes

Hex Dec HRESULT Name Description

0x500 |1280 |0x98110500 |ROUTERERR_NOLOCKEDMEMORY Locked memory cannot be allocated.

0x501 |1281 |0x98110501 ROUTERERR_RESIZEMEMORY The router memory size could not be changed.

0x502 [1282 |0x98110502 |ROUTERERR_MAILBOXFULL The mailbox has reached the maximum number of
possible messages.

0x503 |1283 |0x98110503 |ROUTERERR_DEBUGBOXFULL The Debug mailbox has reached the maximum
number of possible messages.

0x504 |1284 |0x98110504 |ROUTERERR_UNKNOWNPORTTYPE The port type is unknown.

0x505 [1285 |0x98110505 |ROUTERERR_NOTINITIALIZED The router is not initialized.

0x506 (1286 |0x98110506 |ROUTERERR_PORTALREADYINUSE The port number is already assigned.

0x507 |1287 |0x98110507 |ROUTERERR_NOTREGISTERED The port is not registered.

0x508 |1288 |0x98110508 |ROUTERERR_NOMOREQUEUES The maximum number of ports has been reached.

0x509 [1289 |0x98110509 |ROUTERERR_INVALIDPORT The port is invalid.

0x50A |1290 |0x9811050A |ROUTERERR_NOTACTIVATED The router is not active.

0x50B {1291 |0x9811050B |ROUTERERR_FRAGMENTBOXFULL The mailbox has reached the maximum number for
fragmented messages.

0x50C [1292 |0x9811050C |ROUTERERR_FRAGMENTTIMEOUT A fragment timeout has occurred.

0x50D [1293 |0x9811050D |ROUTERERR_TOBEREMOVED The port is removed.

General ADS error codes

TF6310

Version: 1.5.1

105

Appendix BEGKHOFF
Hex Dec HRESULT Name Description

0x700 (1792 |0x98110700 |ADSERR_DEVICE_ERROR General device error.

0x701 (1793 |0x98110701 |ADSERR_DEVICE_SRVNOTSUPP Service is not supported by the server.

0x702 (1794 |0x98110702 |ADSERR_DEVICE_INVALIDGRP Invalid index group.

0x703 (1795 |0x98110703 |ADSERR_DEVICE_INVALIDOFFSET Invalid index offset.

0x704 (1796 |0x98110704 |ADSERR_DEVICE_INVALIDACCESS Reading or writing not permitted.
Several causes are possible. For example, an
incorrect password was entered when creating
routes.

0x705 (1797 |0x98110705 |ADSERR_DEVICE_INVALIDSIZE Parameter size not correct.

0x706 [1798 |0x98110706 |ADSERR_DEVICE_INVALIDDATA Invalid data values.

0x707 (1799 |0x98110707 |ADSERR_DEVICE_NOTREADY Device is not ready to operate.

0x708 [1800 |0x98110708 |ADSERR_DEVICE_BUSY Device is busy.

0x709 [1801 |0x98110709 |ADSERR_DEVICE_INVALIDCONTEXT Invalid operating system context. This can result
from use of ADS blocks in different tasks. It may be
possible to resolve this through multitasking
synchronization in the PLC.

0x70A [1802 |0x9811070A |ADSERR_DEVICE_NOMEMORY Insufficient memory.

0x70B (1803 |0x9811070B |ADSERR_DEVICE_INVALIDPARM Invalid parameter values.

0x70C [1804 |0x9811070C |ADSERR_DEVICE_NOTFOUND Not found (files, ...).

0x70D (1805 |0x9811070D |ADSERR_DEVICE_SYNTAX Syntax error in file or command.

0x70E [1806 |0x9811070E |ADSERR_DEVICE_INCOMPATIBLE Objects do not match.

0x70F [1807 |0x9811070F |ADSERR_DEVICE_EXISTS Object already exists.

0x710 [1808 |0x98110710 |ADSERR_DEVICE_SYMBOLNOTFOUND Symbol not found.

0x711 [1809 |0x98110711 |ADSERR_DEVICE_SYMBOLVERSIONINVALID |Invalid symbol version. This can occur due to an
online change. Create a new handle.

0x712 1810 |0x98110712 |ADSERR_DEVICE_INVALIDSTATE Device (server) is in invalid state.

0x713 |1811 |0x98110713 |ADSERR_DEVICE_TRANSMODENOTSUPP AdsTransMode not supported.

0x714 [1812 |0x98110714 |ADSERR_DEVICE_NOTIFYHNDINVALID Notification handle is invalid.

0x715 (1813 |0x98110715 |ADSERR_DEVICE_CLIENTUNKNOWN Notification client not registered.

0x716 [1814 |0x98110716 |ADSERR_DEVICE_NOMOREHDLS No further handle available.

0x717 [1815 |0x98110717 |ADSERR_DEVICE_INVALIDWATCHSIZE Notification size too large.

0x718 |1816 |0x98110718 |ADSERR_DEVICE_NOTINIT Device not initialized.

0x719 [1817 |0x98110719 |ADSERR_DEVICE_TIMEOUT Device has a timeout.

0x71A [1818 |0x9811071A |ADSERR_DEVICE_NOINTERFACE Interface query failed.

0x71B [1819 |0x9811071B |ADSERR_DEVICE_INVALIDINTERFACE Wrong interface requested.

0x71C [1820 |0x9811071C |ADSERR_DEVICE_INVALIDCLSID Class ID is invalid.

0x71D [1821 |0x9811071D |ADSERR_DEVICE_INVALIDOBJID Object ID is invalid.

0x71E |1822 |0x9811071E |ADSERR_DEVICE_PENDING Request pending.

0x71F [1823 |0x9811071F |ADSERR_DEVICE_ABORTED Request is aborted.

0x720 [1824 |0x98110720 |ADSERR_DEVICE_WARNING Signal warning.

0x721 [1825 |0x98110721 |ADSERR_DEVICE_INVALIDARRAYIDX Invalid array index.

0x722 [1826 |0x98110722 |ADSERR_DEVICE_SYMBOLNOTACTIVE Symbol not active.

0x723 (1827 |0x98110723 |ADSERR_DEVICE_ACCESSDENIED Access denied.
Several causes are possible. For example, a
unidirectional ADS route is used in the opposite
direction.

0x724 |1828 |0x98110724 |ADSERR_DEVICE_LICENSENOTFOUND Missing license.

0x725 [1829 |0x98110725 |ADSERR_DEVICE_LICENSEEXPIRED License expired.

0x726 [1830 |0x98110726 |ADSERR_DEVICE_LICENSEEXCEEDED License exceeded.

0x727 [1831 |0x98110727 |ADSERR_DEVICE_LICENSEINVALID Invalid license.

0x728 [1832 |0x98110728 |ADSERR_DEVICE_LICENSESYSTEMID License problem: System ID is invalid.

0x729 [1833 |0x98110729 |ADSERR_DEVICE_LICENSENOTIMELIMIT License not limited in time.

0x72A (1834 |0x9811072A |ADSERR_DEVICE_LICENSEFUTUREISSUE Licensing problem: time in the future.

0x72B (1835 |0x9811072B |ADSERR_DEVICE_LICENSETIMETOLONG License period too long.

0x72C [1836 |0x9811072C |ADSERR_DEVICE_EXCEPTION Exception at system startup.

0x72D [1837 |0x9811072D |ADSERR_DEVICE_LICENSEDUPLICATED License file read twice.

0x72E |1838 |0x9811072E |ADSERR_DEVICE_SIGNATUREINVALID Invalid signature.

0x72F [1839 |0x9811072F |ADSERR_DEVICE_CERTIFICATEINVALID Invalid certificate.

0x730 [1840 |0x98110730 |ADSERR_DEVICE_LICENSEOEMNOTFOUND |Public key not known from OEM.

0x731 [1841 |0x98110731 |ADSERR_DEVICE_LICENSERESTRICTED License not valid for this system ID.

106

Version: 1.5.1

TF6310

BEGKHOFF Appendix
Hex Dec HRESULT Name Description

0x732 [1842 |0x98110732 |ADSERR_DEVICE_LICENSEDEMODENIED Demo license prohibited.

0x733 [1843 |0x98110733 |ADSERR_DEVICE_INVALIDFNCID Invalid function ID.

0x734 |1844 |0x98110734 |ADSERR_DEVICE_OUTOFRANGE Outside the valid range.

0x735 (1845 |0x98110735 |ADSERR_DEVICE_INVALIDALIGNMENT Invalid alignment.

0x736 |1846 |0x98110736 |ADSERR_DEVICE_LICENSEPLATFORM Invalid platform level.

0x737 (1847 |0x98110737 |ADSERR_DEVICE_FORWARD_PL Context — forward to passive level.

0x738 (1848 |0x98110738 |ADSERR_DEVICE_FORWARD_DL Context — forward to dispatch level.

0x739 [1849 |0x98110739 |ADSERR_DEVICE_FORWARD_RT Context — forward to real-time.

0x740 [1856 |0x98110740 |ADSERR_CLIENT_ERROR Client error.

0x741 [1857 |0x98110741 |ADSERR_CLIENT_INVALIDPARM Service contains an invalid parameter.

0x742 [1858 |0x98110742 |ADSERR_CLIENT_LISTEMPTY Polling list is empty.

0x743 (1859 |0x98110743 |ADSERR_CLIENT_VARUSED Var connection already in use.

0x744 [1860 |0x98110744 |ADSERR_CLIENT_DUPLINVOKEID The called ID is already in use.

0x745 (1861 |0x98110745 |ADSERR_CLIENT_SYNCTIMEOUT Timeout has occurred — the remote terminal is not
responding in the specified ADS timeout. The route
setting of the remote terminal may be configured
incorrectly.

0x746 [1862 |0x98110746 |ADSERR_CLIENT_W32ERROR Error in Win32 subsystem.

0x747 [1863 |0x98110747 |ADSERR_CLIENT_TIMEOUTINVALID Invalid client timeout value.

0x748 [1864 |0x98110748 |ADSERR_CLIENT_PORTNOTOPEN Port not open.

0x749 [1865 |0x98110749 |ADSERR_CLIENT_NOAMSADDR No AMS address.

0x750 [1872 |0x98110750 |ADSERR_CLIENT_SYNCINTERNAL Internal error in Ads sync.

0x751 [1873 |0x98110751 |ADSERR_CLIENT_ADDHASH Hash table overflow.

0x752 [1874 |0x98110752 |ADSERR_CLIENT_REMOVEHASH Key not found in the table.

0x753 |1875 |0x98110753 |ADSERR_CLIENT_NOMORESYM No symbols in the cache.

0x754 (1876 |0x98110754 |ADSERR_CLIENT_SYNCRESINVALID Invalid response received.

0x755 [1877 |0x98110755 |ADSERR_CLIENT_SYNCPORTLOCKED Sync Port is locked.

0x756 [1878 |0x98110756 |ADSERR_CLIENT_REQUESTCANCELLED The request was canceled.

RTime error codes

Hex Dec HRESULT Name Description

0x1000 4096 |0x98111000 |RTERR_INTERNAL Internal error in the real-time system.

0x1001 |4097 |0x98111001 |RTERR_BADTIMERPERIODS Timer value is not valid.

0x1002 |4098 |0x98111002 |RTERR_INVALIDTASKPTR Task pointer has the invalid value 0 (zero).

0x1003 4099 |0x98111003 |RTERR_INVALIDSTACKPTR Stack pointer has the invalid value 0 (zero).

0x1004 4100 |0x98111004 |RTERR_PRIOEXISTS The request task priority is already assigned.

0x1005 |4101 |0x98111005 |RTERR_NOMORETCB No free TCB (Task Control Block) available. The
maximum number of TCBs is 64.

0x1006 (4102 |0x98111006 |RTERR_NOMORESEMAS No free semaphores available. The maximum number of
semaphores is 64.

0x1007 [4103 |0x98111007 |RTERR_NOMOREQUEUES No free space available in the queue. The maximum
number of positions in the queue is 64.

0x100D 4109 |0x9811100D |RTERR_EXTIRQALREADYDEF An external synchronization interrupt is already applied.

0x100E |4110 |0x9811100E |RTERR_EXTIRQNOTDEF No external sync interrupt applied.

0x100F 4111 |0x9811100F |RTERR_EXTIRQINSTALLFAILED Application of the external synchronization interrupt has
failed.

0x1010 4112 |0x98111010 |RTERR_IRQLNOTLESSOREQUAL Call of a service function in the wrong context

0x1017 |4119 |0x98111017 |RTERR_VMXNOTSUPPORTED Intel VT-x extension is not supported.

0x1018 4120 |0x98111018 |RTERR_VMXDISABLED Intel VT-x extension is not enabled in the BIOS.

0x1019 4121 |0x98111019 |RTERR_VMXCONTROLSMISSING Missing function in Intel VT-x extension.

0x101A |4122 |0x9811101A |RTERR_VMXENABLEFAILS Activation of Intel VT-x fails.

Specific positive HRESULT Return Codes:

TF6310

Version: 1.5.1

107

Appendix BEGKHOFF

HRESULT Name Description
0x0000_0000 S OK No error.
0x0000_0001 S FALSE No error.

Example: successful processing, but with a negative or
incomplete result.

0x0000_0203 S_PENDING No error.
Example: successful processing, but no result is available
yet.

0x0000_0256 S_WATCHDOG_TIMEOUT No error.

Example: successful processing, but a timeout occurred.

TCP Winsock error codes

Hex Dec Name Description

0x274C 10060 WSAETIMEDOUT A connection timeout has occurred - error while establishing the
connection, because the remote terminal did not respond properly after a
certain period of time, or the established connection could not be
maintained because the connected host did not respond.

0x274D 10061 WSAECONNREFUSED Connection refused - no connection could be established because the
target computer has explicitly rejected it. This error usually results from an
attempt to connect to a service that is inactive on the external host, that is,
a service for which no server application is running.

0x2751 10065 WSAEHOSTUNREACH No route to host - a socket operation referred to an unavailable host.

More Winsock error codes: Win32 error codes

7.4 Support and Service

Beckhoff and their partners around the world offer comprehensive support and service, making available fast
and competent assistance with all questions related to Beckhoff products and system solutions.

Download finder

Our download finder contains all the files that we offer you for downloading. You will find application reports,
technical documentation, technical drawings, configuration files and much more.

The downloads are available in various formats.

Beckhoff's branch offices and representatives

Please contact your Beckhoff branch office or representative for local support and service on Beckhoff
products!

The addresses of Beckhoff's branch offices and representatives round the world can be found on our internet
page: www.beckhoff.com

You will also find further documentation for Beckhoff components there.

Beckhoff Support

Support offers you comprehensive technical assistance, helping you not only with the application of
individual Beckhoff products, but also with other, wide-ranging services:

* support
+ design, programming and commissioning of complex automation systems
» and extensive training program for Beckhoff system components

Hotline: +49 5246 963-157
e-mail: support@beckhoff.com
Beckhoff Service

The Beckhoff Service Center supports you in all matters of after-sales service:

* on-site service

108 Version: 1.5.1 TF6310

https://www.beckhoff.com/en-gb/support/download-finder/index-2.html
https://www.beckhoff.com/support
https://www.beckhoff.com/

BECKHOFF

Appendix

* repair service
* spare parts service
* hotline service

Hotline: +49 5246 963-460
e-mail: service@beckhoff.com
Beckhoff Headquarters

Beckhoff Automation GmbH & Co. KG

Huelshorstweg 20

33415 Verl

Germany

Phone: +49 5246 963-0

e-mail: info@beckhoff.com

web: www.beckhoff.com

TF6310 Version: 1.5.1 109

https://www.beckhoff.com/

Trademark statements

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10° EtherCAT P® Safety over EtherCAT®,
TwinSAFE®, XFC®, XTS® and XPlanar® are registered trademarks of and licensed by Beckhoff Automation GmbH.

Third-party trademark statements

Arm, Arm9 and Cortex are trademarks or registered trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or elsewhere.
Intel, the Intel logo, Intel Core, Xeon, Intel Atom, Celeron and Pentium are trademarks of Intel Corporation or its subsidiaries.
Microsoft, Microsoft Azure, Microsoft Edge, PowerShell, Visual Studio, Windows and Xbox are trademarks of the Microsoft group of companies.

Wireshark is a registered trademark of Sysdig, Inc.

More Information:
www.beckhoff.com/tf6310

Beckhoff Automation GmbH & Co. KG
Hilshorstweg 20

33415 Verl

Germany

Phone: +49 5246 9630

info@beckhoff.com
www.beckhoff.com

mailto:info@beckhoff.com?subject=TF6310
https://www.beckhoff.com
https://www.beckhoff.com/tf6310

	 Table of contents
	1 Foreword
	1.1 Notes on the documentation
	1.2 For your safety
	1.3 Notes on information security
	1.4 Documentation issue status

	2 Overview
	2.1 Comparison TF6310 TF6311

	3 Installation
	3.1 System requirements
	3.2 Installation
	3.3 Installation from TwinCAT 4026
	3.4 Installation Windows CE
	3.5 Licensing
	3.6 Migration from TwinCAT 2

	4 Technical introduction
	4.1 Quick Start
	4.2 Protocols

	5 PLC API
	5.1 Function blocks
	5.1.1 FB_SocketConnect
	5.1.2 FB_SocketClose
	5.1.3 FB_SocketCloseAll
	5.1.4 FB_SocketListen
	5.1.5 FB_SocketAccept
	5.1.6 FB_SocketSend
	5.1.7 FB_SocketReceive
	5.1.8 FB_SocketUdpCreate
	5.1.9 FB_SocketUdpSendTo
	5.1.10 FB_SocketUdpReceiveFrom
	5.1.11 FB_SocketUdpAddMulticastAddress
	5.1.12 FB_SocketUdpDropMulticastAddress
	5.1.13 FB_TlsSocketConnect
	5.1.14 FB_TlsSocketListen
	5.1.15 FB_TlsSocketCreate
	5.1.16 FB_TlsSocketAddCa
	5.1.17 FB_TlsSocketAddCrl
	5.1.18 FB_TlsSocketSetCert
	5.1.19 FB_TlsSocketSetPsk
	5.1.20 Helper
	5.1.20.1 FB_ClientServerConnection
	5.1.20.2 FB_ServerClientConnection
	5.1.20.3 FB_ConnectionlessSocket

	5.2 Functions
	5.2.1 F_CreateServerHnd
	5.2.2 HSOCKET_TO_STRING
	5.2.3 HSOCKET_TO_STRINGEX
	5.2.4 SOCKETADDR_TO_STRING

	5.3 Data types
	5.3.1 E_SocketAcceptMode
	5.3.2 E_SocketConnectionState
	5.3.3 E_SocketConnectionlessState
	5.3.4 E_WinsockError
	5.3.5 ST_SockAddr
	5.3.6 ST_TlsConnectFlags
	5.3.7 ST_TlsListenFlags
	5.3.8 T_HSERVER
	5.3.9 T_HSOCKET

	5.4 Global constants
	5.4.1 Library version
	5.4.2 Parameter list

	6 Samples
	6.1 TCP
	6.1.1 Sample01: "Echo" client/server (basic function blocks)
	6.1.1.1 Overview
	6.1.1.2 Integration in TwinCAT and Test
	6.1.1.3 PLC Client
	6.1.1.3.1 FB_LocalClient
	6.1.1.3.2 FB_ClientDataExcha

	6.1.1.4 PLC Server
	6.1.1.4.1 FB_LocalServer
	6.1.1.4.2 FB_RemoteClient
	6.1.1.4.3 FB_ServerDataExcha

	6.1.1.5 .NET client

	6.1.2 Sample02: “Echo“ client /server
	6.1.3 Sample03: “Echo” client/server
	6.1.4 Sample04: Binary data exchange
	6.1.5 Sample05: Binary data exchange
	6.1.6 Sample06: "Echo" client/server with TLS (basic modules)
	6.1.7 Sample07: "Echo" client/server with TLS-PSK (basic modules)

	6.2 UDP
	6.2.1 Sample01: Peer-to-peer communication
	6.2.1.1 Overview
	6.2.1.2 Integration in TwinCAT and Test
	6.2.1.3 PLC devices A and B
	6.2.1.4 .NET communication

	6.2.2 Sample02: Multicast

	7 Appendix
	7.1 OSI model
	7.2 KeepAlive configuration
	7.3 Error codes
	7.3.1 Overview of the error codes
	7.3.2 Internal error codes of the TwinCAT TCP/IP Connection Server
	7.3.3 Troubleshooting/diagnostics
	7.3.4 ADS Return Codes

	7.4 Support and Service

		documentation@beckhoff.com
	2025-05-21T13:08:10+0200
	Beckhoff Automation, Verl
	Documentation Publishing

